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Abstract

Inactivation of the von Hippel-Lindau (VHL) E3 ubiquitin ligase protein is a hallmark of clear cell 

renal cell carcinoma (ccRCC). Identifying how pathways affected by VHL loss contribute to 

ccRCC remains challenging. We used a genome-wide in vitro expression strategy to identify 

proteins that bound VHL when hydroxylated. Zinc fingers and homeoboxes 2 (ZHX2) was found 

as a VHL target and its hydroxylation allowed VHL to regulate its protein stability. Tumor cells 

from ccRCC patients with VHL loss-of-function mutations usually had increased abundance and 

nuclear localization of ZHX2. Functionally, depletion of ZHX2 inhibited VHL-deficient ccRCC 

cell growth in vitro and in vivo. Mechanistically, integrated ChIP-Seq and microarray analysis 

showed that ZHX2 promoted NF-κB activation. These studies reveal ZHX2 as a potential 

therapeutic target for ccRCC.

One Sentence Summary

A genome-wide screen identified ZHX2 as a hydroxylation-dependent VHL substrate that 

promotes NF-κB activity and ccRCC tumorigenesis

ccRCC makes up approximately 70% of all renal malignancies and up to 92% of these 

cancers have inactivated the VHL gene (1, 2). Therapies that indirectly target the canonical 

VHL substrate HIF, such as vascular endothelial growth factor (VEGF) inhibitors, are the 

standard of care for ccRCC but drug resistance occurs in most patients (3). Therefore, 

identification of additional VHL substrates could improve therapeutic options for ccRCC.

Prolyl hydroxylation of HIFα paralogs by EglN family proteins promotes their binding with 

the VHL complex (VBC, including VHL and elongin B and C), which leads to their 

ubiquitination and degradation (4–7). Other potential VHL targets might undergo similar 

prolyl hydroxylation. Therefore, hydroxylated (p-OH), but not non-hydroxylated HIF1α 
peptide should compete with potential VHL targets for binding with VBC. We validated this 

by incubating 35S-labeled HIF2α protein with Glutathione S-transferase VBC (GST-VBC) 

in the presence of p-OH HIF1α peptide in a competition assay (fig. S1A). Next, a genome-

wide human cDNA library was divided into approximately 700 pools with 24 cDNAs/pool 

(8), which were in vitro translated followed by binding assays with the GST-VBC in the 

presence of either unmodified or p-OH HIF1α peptide. Pools containing a potential binding 

partner were further analyzed to identify individual proteins (Fig. 1A). We mixed the HIF2α 
cDNA with a cDNA pool and found that even in the ratio of 33:1 (cDNA pool: HIF2α), 
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HIF2α can be retrieved as a positive hit (fig. S1B). We discovered a pool that contained a 

protein whose binding to VBC was displaced by the p-OH HIF1α peptide and identified 

ZHX2 as the relevant protein in the pool (Fig. 1B-C). Similar to HIF2α, the prolyl 

hydroxylase inhibitors dimethyloxalylglycine (DMOG), deferoxamine (DFO), or CoCl2 

inhibited binding of ZHX2 to GST-VBC (Fig. 1D).

ZHX2 was reported to be a tumor suppressor in hepatocellular carcinoma (HCC) and 

lymphoma (9, 10). Recently, mRNA levels of its related family members ZHX1 and ZHX3 

were reported to associate with the pathological stage of ccRCC (11). The amount of ZHX2 

protein, but not ZHX1 or 3, in VHL-deficient ccRCC cells decreased if VHL was 

reintroduced (fig. S1C-D) and inhibition of prolyl hydroxylation or proteasomal degradation 

increased ZHX2 protein levels (Fig. 1E-F, fig. S1E). ZHX2 was predominantly localized in 

the nucleus (fig. S1F). Prolyl hydroxylation inhibition led to decreased binding of ZHX2 to 

VHL (Fig. 1G, fig. S1G). DMOG, DFO, proteasomal inhibitor MG132, and CRISPR/Cas9-

mediated elimination of VHL increased the abundance of ZHX2 protein in VHL-proficient 

human kidney cells (fig. S1H-J). Conversely, reintroduction of VHL into VHL-deficient 

ccRCC cells increased the ubiquitination and degradation of endogenous ZHX2 (Fig.1H). 

Similar effects were observed with exogenous ZHX2 (Fig.1I, fig.S1K-M). Thus, ZHX2 is 

regulated by VHL through prolyl hydroxylation and proteasomal degradation. Next, we 

performed mass spectrometry and identified three ZHX2 prolyl hydroxylation sites: proline 

427, 440, and 464 (fig. S2A-E). We generated single proline-to-alanine mutants (P427A, 

P440A, and P464A) and a triple mutant that harbors three mutations (P3A). The single 

mutants, and especially the P3A mutant, exhibited decreased VHL binding, ubiquitination 

and a concomitant increase of ZHX2 (Fig.1J-K, fig. S2F-G). The sensitivity of the single 

mutants to VHL was variable in different ccRCC cell lines (fig. S2F-G). The significance of 

this is unclear but may reflect cell line-dependent differences on hydroxylating the 

remaining prolyl hydroxylation sites due to variable expression of relevant hydroxylase(s).

We obtained 7 tumors from ccRCC patients and confirmed VHL loss of function mutations 

important for HIFα regulation in all 7 by sequencing (2, 12–15) (Table S1), most of which 

contained greater amounts of ZHX2, HIF1α and HIF2α than the paired normal tissues (Fig. 

2A). For two tumors with VHL missense mutations (332 and 778), we did not observe 

distinctive upregulation of ZHX2 compared to normals, possibly because such mutations are 

less critical for ZHX2 regulation. Normal kidney tissues contained variable amount of 

ZHX2, HIF1α and HIF2α, which could be due to tissue heterogeneity or some degree of 

tumor contamination. In some cases, protein levels of ZHX2 and HIFα did not correlate 

with one another, possibily because of distinct VHL-independent regulatory pathways. 

ZHX2, HIF1α and HIF2α upregulation were also found for another two pairs of ccRCC 

tumor tissues harboring VHL frameshift mutations (Table S1), but not ccRCC tumors with 

intact VHL (Fig. 2B). Despite the lack of ZHX2 protein by western blot, ZHX2 displayed 

cytoplasmic and apical membrane immunohistochemical staining patterns in normals, 

similar to HIF2α. This discrepancy remains to be resolved. On the other hand, ZHX2 was 

exclusively in the nucleus of tumors harboring VHL frameshift mutations (fig. S3A-C, Fig. 

2C). These findings were corroborated using ccRCC tissue microarray (Fig. 2D-E, Table 
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S2). Thus, VHL loss usually increases the abundance and nuclear levels of ZHX2 in ccRCC 

tumors.

Depletion of ZHX2 in multiple VHL-deficient ccRCC cells with several independent 

shRNAs or sgRNAs decreased cell proliferation and growth in soft agar (Fig. 3A-F, fig. 

S4A-G and fig. S5A-H). These phenotypic defects were rescued by exogenously expressing 

shRNA-resistant or sgRNA-resistant ZHX2 cDNAs respectively (Fig. 3G-I, fig. S4H-I and 
fig. S5I-M). These rescues were incomplete, however, possibly because the exogenous 

ZHX2 was incompletely localized to nuclei compared to endogenous ZHX2 (fig. S4J). In 

addition, ZHX2 depletion decreased orthotopic tumor growth (Fig. 3J-K, fig. S6A). To ask 

if ZHX2 was required for established tumors, we introduced two doxycycline-inducible 

ZHX2 shRNAs into 786-O cells. Depletion of ZHX2 in the presence of doxycycline 

correlated with decreased cell proliferation in vitro (fig. S6B-C). Next, 786-O cells 

expressing either ZHX2 shRNAs (45) cells or the control were injected into the renal 

capsules of immuno-deficient mice. Upon tumor formation, mice were fed doxycycline. 

Whereas cells expressing control shRNA grew readily after 6 weeks, cells expressing ZHX2 

shRNA failed to proliferate, as determined by serial in vivo live tumor imaging and tumor-

bearing kidney weights at necropsy (Fig. 3L-M, fig. S6D-E).

Next, we performed gene expression profiling of 786-O cells after ZHX2 knockdown 

followed by gene set enrichment analysis (GSEA) adjusted for gene function associated with 

oncogenic pathways. ZHX2 depletion caused decreased expression of multiple genes linked 

with anti-apoptosis, cell proliferation, invasion/metastasis, and metabolism (fig. S7A-F). 

Interestingly, GSEA analyses also demonstrated that NF-κB activity was suppressed by 

ZHX2 depletion (fig. S8A-B). Real time PCR (RT-PCR) analysis confirmed that ZHX2 

depletion decreased the expression of canonical NF-κB target genes, including c-c motif 

chemokine ligand 2 (CCL2), interleukin-8 (IL8) and interleukin 6 (IL6) (Fig. 4A). 

Generally, the more effective ZHX2 shRNA (sh45) suppressed the NF-κB-responsive 

mRNAs better. The CCL2 and IL8 mRNAs were, however, profoundly suppressed by both 

ZHX2 shRNAs, possibly because both shRNAs suppressed NF-κB below a threshold 

required for these two mRNAs (Fig. 4A).

Loss of VHL constitutively activates the NF-κB pathway (16–18). NF-κB activation is 

characterized by degradation of IκBα and phosphorylation of RelA/p65, which then 

accumulates in the nucleus (19–21). Depletion of ZHX2 had no significant effect on IκB 

degradation or RelA/p65 phosphorylation but inhibited translocation of RelA/p65 into the 

nucleus (Fig. 4B, fig. S8C-D). We detected binding of ZHX2 to RelA/p65 with endogenous 

and exogenous proteins (Fig. 4C, fig. S8E-F). In contrast, we have thus far not detected 

binding of ZHX2 to other NF-κB subunits (fig. S8F). Inhibiting NF-κB with RelA/p65 

shRNAs or with a specific IKK inhibitor compound A (CMPDA) suppressed VHL-deficient 

ccRCC cell proliferation and growth in soft agar (fig. S9A-L) (22). We performed chromatin 

immunoprecipitation followed by high-throughput sequencing (ChIP-seq) to determine 

genome-wide chromatin occupancy of ZHX2 and RelA/p65, which revealed that 75% of p65 

binding sites overlapped with those of ZHX2 (Fig. 4D and fig. S10A-B). ChIP-qPCR 

confirmed the binding by ZHX2 and p65 at the promoters of several genes (fig. S10C-D). 

DNA sequences bound by both NF-κB-p65 and ZHX2 were enriched for the NF-κB 

Zhang et al. Page 4

Science. Author manuscript; available in PMC 2019 January 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



consensus motif (fig. S10E). ZHX2 and RelA/p65 overlapping sites also displayed a strong 

enrichment for H3K4me3 and H3K27ac, but not H3K4me1 (Fig. 4E) (23), indicating that 

ZHX2 and RelA/p65 bound to active gene promoters. Interestingly, ZHX2 and HIF2α 
positively regulated genes showed minimal overlap (fig. S11A. Table S3), and Gene 

Ontology (GO) analysis showed that ZHX2 regulated distinct pathways including NF-κB 

(fig. S11B). Integrated analyses of ZHX2 and NF-κB-p65 localization and gene expression 

showed 390 genes regulated by both ZHX2 and RelA/p65 positively (Fig. 4F, Table S4), 

among which higher expression of 32 genes was associated with a worse prognosis for 

ccRCC patients (Fig. 4G, and Table S5). These 32 genes were further analyzed by 

hierarchical clustering analysis of The Cancer Genome Atalas (TCGA) RCC cases which 

showed that 18 had high correlations with each other (Fig. S12A). A metagene representing 

the median expression of these 18 was a very strong predictor of a worse prognosis (fig. 

S12B). ZHX2 depletion impaired RelA/p65 occupancy on IL6 and inhibitor of NF-κB 

kinase subunit epsilon (IKBKE) promoters (Fig. 4H). VHL binding-defective ZHX2 

promoted ccRCC cell growth on soft agar, with this effect ameliorated by CMPDA treatment 

(fig. S13A-B). Thus, our results suggest that ZHX2 promotes NF-κB activation and ccRCC 

carcinogenesis.

HIF2α and its downstream targets [such as VEGF, glucose transporter member 1 (GLUT1), 

perilipin (PLIN2) and c-Myc] contribute to ccRCC (3, 24–26). Ηowever, the HIF2α 
inhibitor PT2399 is effective in only a subset of ccRCC (27, 28). We found ZHX2 depletion 

or IKK inhibition inhibited soft agar growth of UMRC2 and UMRC6 cells (Fig.3, fig. S4, S5 

and S9) whereas inhibition or depletion of HIF2α did not (27). ZHX2 has been reported to 

be an HCC tumor suppressor and to repress Cyclin A, Cyclin E, alpha fetoprotein (AFP) and 

multidrug resistance 1 (MDR1) expression (10, 29, 30). We did not detect suppression of 

these mRNAs in ccRCC cells (fig. S14). ZHX2 targets may be context dependent, thereby 

allowing it to act as an oncoprotein in ccRCC. The oncogenic role of ZHX2, via control of 

NF-κB activation, might provide additional therapeutic avenues for ccRCC.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. ZHX2 is a VHL target and its stability is regulated through prolyl hydroxylation
(A) Schematic representation of VHL substrate screen.

(B-C) Binding assays of 35S-Methionine labelled in vitro translated cDNA pools (B) or 

ZHX2 (C) and GST-VBC in the presence of wildtype (WT) or prolyl hydroxylated (p-OH) 

HIF peptide.

(D) ZHX2/HIF2α binding to GST-VBC in the presence of prolyl hydroxylase inhibitors.

(E-H) Immunoblots (IB) of whole cell extracts (WCE) and immunoprecipitations (IP) of 

lysates from 786-O cells infected with lentivirus encoding either control vector (Ctrl) or 

hemagglutinin (HA) tagged VHL and treated as indicated for 8 h.

(I) IB of lysates from UMRC2, UMRC6, or RCC4 cells transfected with indicated plasmids.

(J-K) IB of WCE and IP of RCC4 cells transfected with indicated plasmids followed by 

densitometry analysis of Flag-VHL (J) or ubiquitination assays in UMRC2 cells transfected 

with indicated plasmids (K).
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Figure 2. ZHX2 accumulation in ccRCC patients
(A–B) IB of lysates from paired ccRCC patient non-tumor (N) and tumor (T) tissues.

(C) Representative ZHX2 immunohistochemistry staining for ccRCC patient tissues.

(D-E) Representative H&E, ZHX2 immunohistochemistry staining of tumor (T) and non-

tumor (N) tissues (D) and quantification of ZHX2 nuclear/cytoplasmic staining ratio (E) 

from ccRCC TMA slides. Error bars represent SEM (unpaired t-test).
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Figure 3. Requirement of ZHX2 for ccRCC cell proliferation, anchorage-independent growth 
and tumorigenesis
(A-F) IB of cell lysates (A, C), cell proliferation (B, D) and soft agar growth (E, F) of 786-O 

and UMRC2 cells infected with lentivirus encoding control (Ctrl) or ZHX2 shRNAs (43, 45) 

(N=3). See fig. S4A-B for soft agar quantitation results.

(G-I) IB of cell lysates (G) and representative soft agar growth assays (H) and their 

quantification (I) of UMRC2 cells transfected with ZHX2 sh45-resistant HA-ZHX2 or 

control (Ctrl) vector, followed by ZHX2 sh45 or control (Ctrl) shRNA infection (N=3).

(J-M) Representative bioluminescence imagings of 1 and 7 weeks post-implantation (J) and 

quantification of bioluminescence imaging (K) from 786-O cells luciferase stable cells 

infected with either ZHX2 sh45 or control (Ctrl) shRNA, or imagings of 0 week and 6 

weeks post-doxycycline treatment (L) and quantification of imaging (M) from 786-O 
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luciferase stable cells infected with lentivirus encoding either Teton-ZHX2 sh45 or Teton-

control (Teton-Ctrl) shRNA injected orthotopically into the renal sub-capsule of NOD scid 

gamma (NSG) mice as indicated. The Mann-Whitney test was used to calculate the p values.

Error bars represent SEM, ***P<0.001 (unpaired t-test) in panel B, D and I.
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Figure 4. ZHX2 regulates NF-κB activation
(A-B) qRT-PCR quantification of mRNA of NF-κB target genes (A, N=3) or IB of cell 

fractions (B) from 786-O cells infected with ZHX2 shRNAs (43, 45) or Ctrl.

(C) IB of WCE and IP of 786-O cells infected with either Ctrl or HA-VHL.

(D) Venn diagram showing ChIP-Seq binding peak overlap between ZHX2 and NF-κB–p65. 

ZHX2 ChIP-seq experiments were performed in duplicate and intersected.

(E) ChIP-seq signal intensity in the 3 kb surrounding the midpoint of unique ZHX2 (green), 

unique NF-κB–p65 (yellow), and common (purple) sites.

(F) Heatmap for genes downregulated due to ZHX2 and p65 silencing (adj. P < 0.05) are 

shown.

(G) Heatmap for activated genes that were strongly bound by both ZHX2 and NF-κB–p65 

and were significantly associated with ccRCC prognosis (q < 0.01). The log2 Cox Hazard 

Ratio was colored red (higher expression associated with poorer prognosis).
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(H) ChIP-qPCR of NF-κB–p65 binding at IL6 and IKBKE promoters following silencing of 

indicated genes (N=3).

Error bars represent SEM, ***P<0.001 (unpaired t-test).
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