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Summary

A biochemical explanation of development from the fertilized egg to the adult requires an 

understanding of the proteins and RNAs expressed over time during embryogenesis. We present a 

comprehensive characterization of protein and mRNA dynamics across early development in 

Xenopus. Surprisingly, we find that most protein levels change little and duplicated genes are 

expressed similarly. While the correlation between protein and mRNA levels is poor, a mass 

action kinetics model parameterized using protein synthesis and degradation rates regresses 

protein dynamics to RNA dynamics, corrected for initial protein concentration. This study 

provides detailed data for absolute levels of ∼10K proteins and ∼28K transcripts via a convenient 

web portal, a rich resource for developmental biologists. It underscores the lasting impact of 

maternal dowry, finds surprisingly few cases where degradation alone drives a change in protein 

level, and highlights the importance of transcription in shaping the dynamics of the embryonic 

proteome.
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Introduction

Embryonic development had been traditionally described in anatomical terms, tracing 

organs and structures to reveal lineages and explain morphogenesis. Recently such 

descriptions have been greatly augmented by RNA expression studies, revealing many 

molecular events where there were few anatomical markers (Struhl, 1981). When such data 

are coupled with genetic or pseudo-genetic manipulations, plausible pictures emerge of the 

regulatory circuits underlying developmental changes. Most recently there have been efforts 

to incorporate these data into mathematical models of developmental processes (Peter et al., 

2012). Their limitation hinge on the difficulty of relating RNA levels directly to the 

phenotype. Protein is closer to the phenotype than RNA, but protein analysis methods are far 

less sensitive than those for RNA. Protein abundance may also not be the whole story: 

posttranslational modifications may provide crucial regulatory input. There are many 

examples where RNA level is misleading as a measure of protein function, e.g. cyclin 

proteins in the cell cycle or p53 in tumors. Whether many other misleading examples occur 

in the embryo is not known. Information on the RNA/protein relationship is generally 

unavailable at the genome/proteome scale.

Fortunately, methods now allow low mRNA levels to be detected and quantitated accurately 

by RNA-seq, and specific RNAs to be localized by single-molecule FISH. Although protein 

methods are more complex, difficult, and expensive, and less sensitive, the relative 

abundance of proteins in the bulk embryo can also be measured using multiplexed 

approaches. Major unappreciated pitfalls in the first applications of multiplexed mass 

spectrometry (MS) have now been circumvented by new analysis methods (McAlister et al., 

2014; Wühr et al., 2012). Nevertheless serious limitations in applying these techniques to 

embryos remain. A single sample requires about 50 μg of protein, which would represent 

∼1000 mouse embryos. Accurately determining the kinetics of RNA accumulation requires 

synchronized embryonic samples. Several non-traditional systems are naturally 

synchronized, but MS methods require a well-curated reference set of protein sequence 

information, which is often unavailable. Finally, highly abundant proteins like serum or yolk 

Peshkin et al. Page 2

Dev Cell. Author manuscript; available in PMC 2016 November 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



must be removed without depleting other proteins. The Xenopus system addresses all these 

issues: single embryos have about 25 μg of non-yolk protein and in vitro fertilization yields 

very accurate synchrony (Gurdon and Wickens, 1983; Wühr et al., 2014). A good reference 

genome has recently been generated for Xenopus (Bowes et al., 2010), and we now have 

highly reproducible protocols for efficient removal of yolk while sparing other cellular 

components. For many years, Xenopus was the model of choice for early development in 

vertebrate species with many experimental results and conceptual findings, generalizable to 

all vertebrate embryos. Previous attempts at proteomic characterization of Xenopus 

embryonic development suffered from inferior accuracy of the MS2 methods and covered 

fewer proteins than we report, at fewer time points (Sun et al., 2014). An initial effort to 

compare RNA and protein levels found disagreement but provided no satisfactory 

explanation (Smits et al., 2014).

Experimental embryology has provided extraordinary insight, but little understanding on the 

biochemical level. Physiological features of embryos were emphasized in the pre-molecular 

biology era (Brachet, 1950), but have not been explored with modern methods. In this first 

publication we offer a survey of the economy of the egg and embryo, something not 

achievable until the elaboration of genome-wide methods. This broad perspective can 

already be used to inform our understanding of the many biochemical changes underlying 

embryonic development. In many species including the frog the earliest stages of 

development proceed without new transcription; suggesting that the control of protein 

behavior might proceed through unmasking of RNA for translation, or degradation or 

posttranslational modification of existing proteins. After the mid-blastula transition (8000 

cell stage in the frog) transcription is turned on (Newport and Kirschner, 1982), and it has 

been suggested that the original maternal proteins might rapidly turn over at this point 

(Howe et al., 1995). Possible hypotheses about the protein economy range from all proteins 

synthesized on demand, at the right time and location, to stockpiling of all proteins in the 

egg followed by rearrangement and/or degradation of proteins that are in the wrong place. 

Using our quantitative time-resolved inventory of RNA and protein, we have developed a 

picture of the overall strategies used by the egg and embryo. We also provide a deep dataset 

of individual stories of proteins and RNA that can now be woven, by us and others, into 

narratives that can help elucidate of development.

Results

Genome-wide measurements of RNA and protein levels across key developmental stages

We profiled developmental stages (Nieuwkoop and Faber, 1994) spanning early 

development from unfertilized egg (NF 0) through blastula (NF 5 -- 9), gastrula (NF 10 -- 

12.5), neurula (NF 13 -- 21) and tailbud. Stage NF 23 is characterized by presence of blood 

islands and first appearance of olfactory placodes. The last time point (NF 33) is taken when 

heartbeat has started and the tadpole is ready to hatch. Our processing pipeline for 

quantitatively measuring levels of RNA and protein is sketched in Figure 1A. Proteins were 

digested into peptides and change of abundance was measured by isobaric labeling followed 

by MultiNotch MS3 analysis (McAlister et al., 2014); absolute protein abundance was 

estimated via MS1 ion-current (Schwanhäusser et al., 2011; Wühr et al., 2014). mRNA 
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levels were measured across eighteen time points starting from the unfertilized egg to stage 

33, while protein abundance levels were measured at six key stages (NF 2, 5, 9, 12, 23, 33). 

RNA level was further measured in two distinct ways: polyadenylated RNA enrichment and 

ribosomal RNA depletion. mRNA was extracted using standard protocols with bacterial 

sequence spike-ins for quality control and normalization. Our primary dataset is comprised 

of 27877 mRNA profiles and 6509 protein profiles, which overlap 6435 gene products (Fig. 

1B). The overlap is reduced to 5960 if we use only peptides that uniquely match to a single 

predicted protein. In addition, we reanalyzed our published (Wühr et al., 2014) egg protein 

data against the present reference set, resulting in concentration (nM) data for 9728 proteins 

(Table S1). This is fewer than in the original publication because here we only used unique 

peptides. Based on overall abundance distribution (Fig. S1A) we estimate that proteins 

missing from our data are typically present at <10nM.

mRNA measurements are consistent with those previously published—We 

compared the mRNA time series reported here with a microarray study across 14 stages 

previously validated and published by us (Yanai et al., 2011). A total of 7806 transcripts 

were matched between the microarray and the RNA-Seq datasets. The median Pearson 

correlation coefficient among these transcripts is 0.89 and the median cosine distance is 

0.026 (a measure of similarity where zero is coincident and 1 is the most discordant), which 

suggests confidently reproduced expression profiles. The left panel of Fig. 1C presents a 

histogram of cosine distances between previously published mRNA abundance time courses 

and those measured in this study. The right panel provides examples of genes at different 

levels of agreement: chordin (CHRD: 0.06, near median), tenascin (TNN: 0.008, in lowest 

5%) and secernin (SCRN2: 0.3, highest 5%). As we previously showed, some of the 

discordance in biological repeats is explained by heterochronic developmental timing, i.e. 

genes which preserve the general expression pattern but show a shift in the onset of 

expression among different clutches of the same species (Yanai et al., 2011).

Protein measurements are also reliable—We compiled previously published Western 

blots for 35 proteins displaying distinct patterns during the course of development and 

compared these to the quantitative data obtained by mass spectrometry. Overall, our data 

agree very well with established information on protein dynamics (Fig. S1C, Table S1). 

Figure 1D shows a histogram of cosine distances between previously published protein 

abundance changes and changes measured in this study for those proteins (left); examples of 

three protein dynamics patterns quantified via Western blot (solid) and multiplexed 

proteomics (- -) with representative cosine distances (right). The corresponding protein 

distances are color-coded. Three examples are shown: ITLN1 (red) which agrees very well 

between the two methods and has a cosine value of 0.005; LIN28A (magenta), which is at 

the median cosine distance (0.03); and XNF7 (khaki), which shows the lowest level of 

agreement between the two methods (cosine distance 0.15).

Absolute abundance of mRNA and protein—In addition to relative changes, we 

estimated absolute mRNA concentration by dividing the total messenger RNA abundance in 

the embryo proportionally to FPKM counts. We estimate protein concentration based on 

MS1 ion current prorated to the isobarically labeled fractions (Schwanhäusser et al., 2011, 
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Wühr et al., 2014). The Pearson correlation between previously published protein 

concentration and normalized ion-current is 0.92 (Fig. S1B).

Allo-alleles at the protein and mRNA level show no sign of sub-functionalization

The whole X. laevis genome was duplicated about 50MYa -- as a result, many genes have a 

close paralog referred to as the ‘homeolog’ or ‘allo-allele’. Single gene duplications, as well 

as whole genome duplications have a special place in evolutionary theory, where it is 

asserted that they provide a way for new functions to arise through subfunctionalization 

(Barton, 2007; Force et al., 1999). We have compared protein expression patterns across 164 

pairs of homeologs obtained from Xenbase (Bowes et al., 2010), for which the expression 

comparison is possible thanks to unique peptides in each sequence (Fig. 2A). Figure 2B 

shows a typical example of a pair of allo-alleles of gene DAPL1. Protein is shown in green 

and mRNA in blue. There is remarkable concordance across homeologs: the median Pearson 

correlation is 0.94, the median cosine distance is .006. We selected peptides that are both 

unique and differ by only a single amino-acid across the homeologs (see Fig. 2A, Table S1). 

Based on 90 such paired peptides, we again obtain exceptional agreement in expression 

across homeologs with a median Pearson correlation of 0.92 – see the histogram of cosine 

distances for 164 protein pairs (Fig. 2C.left) and 630 mRNA pairs (Fig. 2C.right) where a 

colored arrow shows the position of DAPL1. Gray histograms show the baseline distribution 

obtained by randomly matching pairs of allo-alleles to one another. In this representative set 

of allo-alleles there is no evidence for sub-functionalization. This apparent redundancy in 

conjunction with the dosage difference (Fig. 2D) is consistent with observations in other 

systems of similar time-scale (Dean et al., 2008).

Abundant proteins are stockpiled rather than produced on demand

Most developmental studies have focused on genes expressed at different times, places and 

circumstances. What is not clear is whether these are exceptional cases or whether embryos 

are constantly changing the mix of proteins in the embryo. In X. laevis there is little new 

protein synthesis from fertilization up to neurulation(Lee et al., 1984). Overall protein 

synthesis does not change appreciably throughout these periods and remains at 

approximately 100 ± 20 (sd.) ng per hour or about 0.4% per hour of the total non-yolk 

protein content. Based on these mesurements in 24 hours, at most an additional 9% of 

protein could be synthesized Proteins that appear stable throughout our experiment are 

therefore likely to be made early and not degraded, rather than maintaining a constant level 

through high production rates and high turnover. Nevertheless, bulk measurements bias the 

interpretation toward the most abundant proteins. MS analysis allows us to see which 

proteins are stable and which are dynamic. Figure 3A presents nine main temporal trends of 

relative protein abundance via the medians of clusters (K-means clustering using cosine 

distance, also see Fig. S2A). The thickness of the median line reflects the number of proteins 

that fall into the respective cluster. The two largest clusters (together 3215 or ∼54%) contain 

proteins whose abundances are essentially flat. Except for one dynamic red cluster, all trends 

are either induction or degradation; the more dynamic the trend, the fewer proteins fall into 

that category.
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Many proteins change little in abundance during development from the egg to hatching 

tadpole. To quantitate this behavior we computed a parameter we call “dynamicity”, Δ. For 

each pattern, Δ is defined as the cosine distance between a flat line and the abundance curve. 

Δ is 0 for flat proteins and increases with more active dynamics. Using the value of protein 

abundance discussed above we analyzed Δ as a function of abundance. Figure 3B shows a 

histogram of Δ for detected proteins. As is evident from this histogram, most proteins do not 

change much within the surveyed period. The insert for Fig. 3B presents four examples: 

transportin, the flattest observed (TNPO2: Δ=1.0e-04); ribosomal protein RPL11, at the 

median of the distribution (Δ=0.017), which represents less than 1 degree between vectors; 

an isoform of hemoglobin zeta (HBZ), one of the most dynamic proteins (Δ=0.57; ∼35 

degrees between vectors) and Oncomodulin (OCM2) which shows the same pattern.

Dynamicity decreases with abundance—Figure 3C shows a density plot of protein 

absolute abundance against Δ. This plot illustrates that high abundance proteins are 

generally flat, while low abundance proteins are mostly dynamic. Black circles show two 

abundant isoforms of TPI1 (Triosephosphate Isomerase 1) (1 and 5 μM) which are very flat 

proteins (Δ=0.002 and 0.004). Red circles show positions of two very low abundance 

isoforms of OCM2 (a calmodulin family gene) (6 - 10 nM) which are very dynamic (Δ 
between 0.51 and 0.57) and have identical patterns of accumulation. In particular, of 

proteins whose abundance is less than 100nM, 75% have a dynamicity over 0.1. The 

Spearman correlation between abundance and dynamicity is -0.55. We further confirm this 

trend by subdividing the proteins into ten quantile bins by concentration in log10 scale and 

plotting the mean dynamicity in each bin against the concentration (Fig. S3B), there is a 

clear monotonic trend. To ensure that this trend is not an artifact of measuring the abundant 

protein levels via many constituent peptides, while rare proteins are often measured via only 

a single peptide we present the same plot using only one randomly chosen peptide for each 

protein -- the result is very similar (Fig. S3B).

Specific examples—The general pattern, whereby abundant proteins show very little 

change throughout development into the hatching stage, makes intuitive sense in terms of 

the general function of these proteins. Metabolic enzymes are one group of abundant and flat 

proteins, e.g. complete sets of enzymes are present in the egg for glycolysis, TCA cycle, and 

fatty acid metabolism. These abundant enzymes remain at about the same level throughout 

early development. There is no indication that the formation of tissues of high metabolic 

demand, such as muscle and nerve perturbs the pervasive constancy of the levels of enzymes 

for central metabolism. A few metabolic enzymes with tissue-specific isoforms, such as the 

brain isoform of aldolase (ALDOC) and the liver isoform of carnitine palmitoyl transferase 

(CPT1A), are expressed dynamically once the respective cell types are generated (Fig. S2B). 

Only a small fraction of abundant proteins is gradually degraded throughout gastrulation and 

neurulation. They represent a group composed largely of liver-specific proteins found in the 

oocyte with no measurable mRNA counterpart (Wühr et al., 2014). They are likely 

endocytosed from the bloodstream, along with the yolk protein, vitellogenin, and gradually 

degraded. Liver proteins such as albumin may have no function in the oocyte; hence, it is 

not be surprising that they are degraded and not resynthesized in early development. 

However, other proteins like glycogen phosphorylase have homologs that are found in every 
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cell type. The homologs behave as expected: the abundance of the endogenous protein is 

lower (muscle PYGM and brain PYGB at 0.3 μM and 1.3 μM) than the putatively 

endocytosed protein (liver PYGL 16.1 μM). It would be interesting to know how the 

degradation machinery eliminates specifically the endocytosed protein. Finally, some of the 

most dynamic proteins are transcription factors, such as NFKBIA (Δ=0.29) and two 

isoforms of Y-box protein YBX1 (Δ of 0.28 and .30).

Tissue-specific proteins are typically produced on demand

The elaboration of complex tissues is expected to be accompanied by changes in the levels 

of proteins that pre-existed in the egg and by the synthesis of new proteins. We would 

expect tissue specific proteins to be synthesized as the embryo reaches the stages where 

there is frank expression of a suite of proteins characteristic of that tissue type. Indeed, such 

examples of the tissue specific proteins are present: HAL (Histidine ammonia-lyase) has 

three isoforms, one of which is predominantly (88% of total) present in stage 33 and is 

known to be predominantly expressed in fetal liver. Neurogenesis genes are exemplified by 

such genes as FABP7 (Fatty acid binding protein 7) and OCM2 (Oncomodulin). HBZ (Zeta-

globin) is a polypeptide first synthesized in the yolk sac of the early embryo. In order to 

analyze how tissue-specific gene expression is distributed in embryogenesis, we introduced 

a tissue specificity index T which ranges between 0 (nonspecific) and 1 (highly specific e.g. 

rhodopsins). This index is based on the Gini index, which has been widely used in 

economics for assessing income distribution in a population and has also been used in 

biology for kinase specificity (Gujral et al., 2014). Tissue specific expression data is not 

available for Xenopus. Instead we have used the data available for 96 tissues and cell types 

in mouse, grouping together similar tissues e.g. different neuronal tissues. Figure 4A shows 

the histogram of tissue specificity over all proteins we find in Xenopus embryos with khaki 

and magenta areas showing the lowest and the highest 25% quantile. The proteins in this 

lowest quartile and the highest quartile are chosen to represent nonspecific and tissue-

specific genes respectively, without regard to which particular tissue. We further clustered 

all temporal patterns of protein change using the cosine distance measure to see how tissue 

specificity depends on temporal pattern. Figure 4B shows the two most populated clusters: a 

flat cluster of 1260 proteins and a temporal increasing cluster of 140. Each cluster is labeled 

with a fraction N/S representing how many (N)onspecific and tissue (S)pecific proteins are 

found in each. There is a clear bias (Fisher's test P-value 1e-4) towards nonspecific proteins 

in the flat cluster and towards tissue specific proteins in the dynamic cluster.

We again find some tissue specific proteins in the egg that could be best explained as having 

been endocytosed with vitellogenin (Wühr et al., 2014). As examples of other tissue-specific 

proteins, we also see highly abundant epithelial keratins KRT8 (7 μM) and KRT19 (5 μM), 

long before the appearance of differentiated epithelial cells. Importantly, we do not find any 

other tissue specific intermediate filament proteins that are abundant in differentiated 

tissues: neurofilament protein (L, M, N), desmin, peripherin, and internexin; nor do we find 

other widely accepted neuronal markers, such as TAU or MAP2.
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Evidence for dynamic post translational modification in early development

We made no special effort to examine posttranslational modification, yet we found about a 

thousand spectra for modified peptides (Table S1). Two special cases we briefly consider 

are phosphorylation and acetylation. Eight proteins (e.g. aldolase and nucleoplasmin) show 

both types of modifications. A specific search for phospho-peptides quantifies 731 spectra 

corresponding to about 225 proteins. Figure S4 shows the result of K-means clustering into 

nine clusters. These clusters are not mutually exclusive, since for many genes some peptides 

are de-phosphorylated while others are phosphorylated. E.g. nucleolin has peptides in both 

1st and 7th clusters, while nucleoplasmin (NPM2) in 7st and 9nd clusters. One dramatic 

pattern is rapid de-phosphorylation between fertilization and pre-MBT – cluster 7. Two key 

groups stand out among genes with dynamic phosphorylation patterns. First, 23 genes 

involved in splicing machinery ACIN1, CWC27, CD2BP2, CLNS1A, GEMIN5, DHX16, 

KHSRP, NSRP1, PABPN1, PAPOLA, PRPF3, RBM25, SF1, SF3A1, SRSF4, SRSF11, 

SRRM1, TFIP11, THRAP3, TCERG1, SLU7, ZCCHC8 and ZRANB. Second, 15 genes 

located in nucleoli and involved in ribosomal biogenesis namely: ANP32A, DKC1, ESF1, 

KRI1, NOLC1, NOP58, NPM1, NPM2, NUCKS1, NSUN2, RRP12, LYAR, TOP2A, 

UTP18 and nucleolin (NCL). We also observed acetylated peptides. There is a dramatic 

change in acetylation of Lys27 in histone H3 around the MBT, when transcription starts, 

consistent with studies of histone acetylation in the regulation of transcription (Stasevich et 

al., 2014). Acetylation is known to regulate metabolism in glycolysis, fatty acid synthesis, 

urea cycle, and TCA cycle (Zhao et al., 2010). We find four enzymes in glycolysis that each 

show a major acetylation increase at NF23, while their protein abundances show no 

significant change. These proteins are present at micromolar concentrations (ALDOA, 

ALDOC, LDHb and PGK1 at over 5 μM). Phosphoglucomutase is known to be positively 

regulated by acetylation in the C-terminus and we see a C-terminal acetylation, suggesting 

activation. A more detailed study will require enrichment for peptides harboring such 

modifications.

The correspondence between mRNA and protein in the developing embryo

Generally, mRNA abundance is a poor predictor of protein abundance in the 
embryo—We find that when analyzed stage-by-stage, mRNA concentrations typically only 

modestly correlate with respective protein concentrations. This observation is consistent 

with previous publications in bacteria, yeast and human cell culture (Smits et al., 2014; 

Vogel and Marcotte, 2012). In these studies agreement is quantified as rank correlation 

between abundance of mRNA and protein in a given sample. When calculated this way 

stage-by-stage separately for six stages for which we measured both mRNA and protein 

(Fig. 5A), the median Spearman correlation for each stage is modest, with values similar to 

these previously reported for somatic cells (0.42). Poly-(A) enriched mRNA shows worse 

agreement with protein than ribo-depleted (Fig. 5A) in the early stages, which are known to 

have a lot of poly-A elongation and shortening, while the agreement at later stages is 

somewhat better. These results correspond to our intuition of what might be expected, since 

translational efficiency is affected not only by the total level of mRNA message, but also by 

polyadenylation status.
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The dynamics of protein and RNA are very poorly correlated—An alternative test 

of agreement between mRNA and protein is to look at the correlation of changes across time 

points. In agreement with previously published results, we found mRNA-protein correlation 

to be poor in a majority of cases: the mean Pearson correlation coefficient between mRNA 

and respective protein time series is close to zero (0.2) (See Fig 4B). To exemplify extremes 

in the correlation histogram we provide individual examples of mRNA and protein (Fig 4C). 

One explanation for the general lack of correlation is given by examining the ratio of 

concentration between mRNA and respective protein. The rate of protein synthesis is limited 

by the amount of mRNA available; when the level of RNA is very low relative to the level 

of protein, fluctuations in mRNA lead to small changes in translation rates that have little 

impact on the protein level. Confirming this general trend, when we divided all genes into 

ten bins according to the mRNA/protein ratio (Fig. S3A) we observed that genes that show 

higher mRNA/protein ratios have better agreement between mRNA and protein dynamics.

The correspondence of RNA to protein for dynamic proteins—Coarse co-

clustering mRNA and protein patterns into 3-by-3 matrix reveals the mutual information 

(Fig. 5D). Generally protein dynamics across development can be coarsely classified into 

three categories: those that stay flat, those that disappear, and those that accumulate. The 

more dynamic the protein pattern (left to right in Fig. 5D), the better the agreement between 

protein and mRNA patterns. However this mutual information does not suggest a simple 

temporal correlation. The process of protein synthesis takes time, so protein would be 

expected to be synthesized and accumulated after a delay relative to mRNA synthesis. In a 

related group of cases mRNA levels spike and fade away, while protein is accumulated (as 

in Fig. 6A). We hypothesize that a few of the truly anti-correlated patterns (when mRNA is 

gradually disappearing as protein levels are increasing at and after the MBT) are due to 

packaging of RNA in granules, such as P-bodies (Hogan et al., 2008). Several RNA-binding 

proteins are in this group: RBM7, RBM27, LARP1B, LARP7, KIN, NOL12, YTHDF1. 

These observations suggest the hypothesis that when mRNA granules break up mRNA 

simultaneously becomes available for translation and degradation, leading to the paradoxical 

behavior of RNA decline and protein accumulation. Further, selecting 720 genes where 

protein is dynamic and some maternal mRNA is present we found no cases where pre-MBT 

and post-MBT translation rates (estimated as the ratio of protein increment over the mRNA 

level) are sufficiently different to suggest mRNA “masking” i.e. translational control. 

Overall, though mRNA and protein dynamics typically correlate poorly, one can still gain 

information about likely protein behavior from mRNA dynamics, and vice versa.

Mass-action kinetics equation links RNA changes to protein changes

Although mRNA and protein dynamics poorly correlate, they clearly contain mutual 

information. To test how well we can predict protein dynamics for a given mRNA 

dynamics, we modeled embryonic protein turnover using mass-action kinetics. Under simple 

assumptions of temporal and spatial invariance of synthesis and degradation, the expected 

change in protein levels over time is given by , where p(t) is the 

amount (moles) of protein per embryo, KS is the translation rate (mole per mole per hour) 

for protein at time t, r(t) is the amount of mRNA for the transcript encoding that protein, KD 
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is the decay rate (hour −1) of the protein. For each protein, the parameters KS and KD can be 

fit to the measurements of r(t) and p(t) subject to the initial concentration fixed at p0 so as to 

minimize the difference between the observed protein level pi at time ti and the predicted 

protein level p(ti, KS, KD) on average over all observed time points i (see Fig. 6A):

To prevent over-fitting we also consider simplified models with no synthesis 

; no degradation ; and a degenerate model , 

selecting the best model according to a Bayesian information criterion. The optimization 

search results in so-called MLE (maximum likelihood estimate) values for parameters and 

also estimates confidence intervals for these parameters (Supp Meth).

A non-linear model of protein dynamics with up to three parameters fits most 
of the data—Most of the protein patterns fit the model well. The goodness of fit is 

characterized by the cosine distance between the measured and the predicted pattern as well 

as by adjusted R2 (Fig. S5A). Consider one sample protein Calpain-8 (CAPN8) presented in 

Fig. 6A. The beige stripe shows 95% confidence band for protein dynamics which 

corresponds to the 95% confidence range in synthesis and degradation rates. The no-

degradation model (KD = 0) is selected for this gene, synthesis rate is estimated at a 

maximum constrained value of KS = 1200. Compared to the baseline model of predicting 

protein from mRNA, we improve the Pearson correlation from .469 to 0.999. The cosine 

distance between actual quantitative protein measurements marked via green discs and 

predicted protein level shown by the continuous green curve is 0.0028 (c.f. 0.38 for mRNA 

– protein) -- about 50% of all protein patterns are fit better than that. Adjusted R2 for this fit 

is .70 which is worse than about 75% of all fits.

There are several limitations to this approach. Naturally, the accuracy with which we assign 

half-lives is limited by the observation period of our experiments i.e. ∼50 hours. A flat 

protein is easily explained by setting an initial protein concentration at the right level, then 

assuming a zero degradation rate and a zero synthesis rate, which simply disregards the 

mRNA profile. That trivial model was selected for about 24% of the genes all of which were 

not fit well (R2 < .7). However we get the most information out of dynamic rather than static 

protein patterns. About 18% of the protein patterns needed a complete three–parameter 

model. Another 15% ignored protein synthesis and only assigned a degradation rate, while 

remaining 43% assumed negligible degradation and only used synthesis rate (Fig. 6B).

When we look at the complete collection of RNA and protein measurements, 80% of all 

well-fit (R2 > .7) models use synthesis to explain the protein pattern, and three quarters of 

these do not use the degradation rate. Moreover for about 60% of all proteins the half-life is 

estimated to be longer than the duration of our experiment, suggesting that protein levels 

during this early period are largely controlled by protein synthesis rather than degradation.
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This suggests that there is one broad class of proteins which are deposited in the egg and do 

not need to be localized, while tissue specific proteins are localized by the means of mRNA 

localization or spatially defined mRNA expression and subsequent protein synthesis. 

Finally, there are very few genes for which the protein pattern is dynamic but not regressed 

to mRNA via our simple model (median Δ=0.004 for the degenerate model  genes, c.f. 

Δ=0.072 for genes explained by full  model) suggesting that additional 

layers of translational regulation, or disjoint protein-mRNA localization are not very 

common or not significant in the early embryo.

The distribution of synthesis and degradation rates is physiologically 
plausible—As a result of fitting the model to the data we obtain a wide range of synthesis 

and degradation rates spanning four orders of magnitude. Fig. 6C shows histograms of half-

life and synthesis rate, where the half-life is given in hours, while synthesis rate in molecules 

of protein synthesized per molecule of mRNA per hour (see Table S1). The observed 

distribution is biologically plausible. In particular it resembles the similar distribution 

obtained for mouse cell culture using metabolic labeling (Schwanhäusser et al., 2011). We 

observe a median half-life of 43 hours (over non-zero estimates) and median synthesis of 

213 molecules of protein per molecule of mRNA per hour (c.f. 40h and 140m/m/h for 

mammalian cell culture, and synthesis rates for sea urchin of 120 m/m/h at 15°C (Ben-

Tabou de-Leon and Davidson, 2009)). The long median half-life indicates that most proteins 

are very stable during the period of our time series. There is a general trend that rapidly 

synthesized proteins have shorter half-life (Fig. S5B) with a rank correlation of -0.7. The 

995 short lived proteins (lower 25%) are strongly enriched (43 genes, multiple hypothesis 

adjusted P-value of 3e-20) for the cell cycle genes such as CHEK1, GMNN, kinases PLK1, 

TLK1, CHEK1, AURKB and DNA-binding (52 genes, P-value 5e-15). The long-lived slow 

turnover proteins (2209 estimated half life over 50 h) include proteins such as metabolic 

enzymes and tubulins and are strongly enriched (90 genes, adjusted P-value of 1e-29) for 

mitochondrial proteins (121 genes P-value 5e-71) such as ATP synthases (e.g. ATP5J, J2, 

C1, A1) and NADH dehydrogenases (e.g. NDUF A3, A6, A9, B9).

mRNA dynamics can be used to predict protein dynamics—Having shown that 

three parameter models can typically encode protein dynamics, we next asked if we can 

predict protein dynamics throughout development given the mRNA profile and the initial 

protein concentration in the egg. As a proof-of-principle we employ a simplified predictor, 

which uses the median rates of synthesis and degradation for all proteins. We use this model 

to forecast the protein expression for the genes where we had measured the protein patterns 

and compared the predicted and measured patterns. The predictive power of this model is 

best measured by a cosine distance between predicted and measured temporal pattern of 

protein expression (Fig. S5C). Figure 6D provides a histogram of Pearson correlation for 

model-based vs measured protein expression for a model assuming median synthesis and 

median degradation rates while using the actual initial concentration. The median correlation 

of 0.72 is a striking improvement over simply using the mRNA dynamics as described 

above (Fig. 5B), which gave a correlation of 0.24. Furthermore, the mRNA dynamics 

pattern can be used to improve the prediction power. For example the median synthesis rate 
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for proteins whose mRNA is broadly degraded (see bottom mRNA cluster of Fig. 5D) is 

only 17 m/m/h, while for proteins whose mRNA is in the top cluster (sharply induced) the 

median is 287 m/m/h. By conditioning the synthesis rate on mRNA pattern category we 

improved the modeling accuracy to .84 which could likely be further improved by 

considering more than three categories.

Note that our method immediately allows us to make predictions for over 3000 additional 

proteins that could not be detected in the developmental series but whose concentration in 

the egg was measured. For all remaining genes that were not detected in the egg we can 

assume the low expected 1nM concentration and still apply our method (see Supplemental 

Data). Yet another application of our approach is to predict the protein dynamics in a part of 

the embryo if spatially resolved information on mRNA levels is available (Junker et al., 

2014). If the fraction of the embryonic volume where a given gene is expressed can be 

estimated from e.g. in-situ hybridization, the projected protein dynamics can be adjusted by 

pro-rating both the initial protein level and the mRNA expression level. Such predictions 

would be valuable for planning morpholino and RNAi experiments (Heasman et al., 2000). 

The ability to calculate protein levels will be especially important for classes of genes that 

are expressed at low levels and are hard to detect in MS measurements, such as transcription 

factors, receptors and secreted signaling molecules.

Embryonic protein economy expressed as gradual replacement of maternal 
by zygotic protein—As the embryo develops, maternally deposited proteins are degraded 

and replaced by zygotic products. For each individual protein where synthesis and 

degradation rates were recovered from modeling, turnover dynamics can be obtained by 

solving a simple system of equations where at each point total protein concentration is 

factored into two components, maternal and zygotic:

subject to boundary conditions: pN(t0) = 0; pM(t0) = p0; where p0 is the concentration of 

zygotic protein product (which includes protein translated from maternal mRNA stored in 

the egg); pM is concentration of maternal protein product. This system can be solved for 

pM(t) and pN(t) for each gene. The turnover can now be integrated over all proteins fitted by 

our model and extrapolated to the whole embryo, as illustrated in Fig. 7. This turnover 

analysis suggests that (not counting yolk) most of the protein composition of a complex 

highly differentiated organism 50 hours after fertilization was originally provided to it via 

maternal deposit. Rather than synthesizing most of the building material from scratch, 

degrading or secreting a lot of material, the embryo makes careful use of what is provided 

maternally. Presumably some of that protein is simply stockpiled until it is useful, raising 

the question of exactly how the stockpiled protein is maintained in an inactive state and 

prevented from premature degradation. One well-studied example is yolk, which is stored in 

granules; most of the maternal yolk supply persists through the period of our experiment 

(Jorgensen et al., 2009). Other proteins may similarly be compartmentalized, or maintained 
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in an inactive state via post-translational modification. The question of how this is achieved, 

and how needed protein is eventually released, opens up a number of research directions, 

including research on positional signaling and shuttling mechanisms.

Discussion

In situ hybridization (Gall and Pardue, 1969) enabled the revolutionary developments of 

Drosophila genetics to be applied at the molecular level. Together with other techniques, 

such as RTPCR and microarray analysis, we have a deeper understanding of vertebrate and 

invertebrate development. Yet, it is still uncertain how closely mRNA changes correlate 

with the activation of specific developmental processes. To address this, we need to take on 

the daunting task of measuring both protein expression and posttranslational modification. 

The optimal system in which to do this is Xenopus, where synchrony is easy to achieve and 

each egg has sufficient protein for deep analysis.

We have focused here on protein dynamics in the early embryo and on comparing the 

dynamics of proteins to their mRNAs in the early development of frog eggs from 

fertilization to just before hatching (stage NF33). We find that two kinds of protein patterns 

dominate the early embryo: a stable set of maternally inherited proteins, many of them 

abundant; and a very dynamic set of lower abundance proteins, which most often strongly 

track with RNA levels. Transcription factors are an example of this latter class. Such 

proteins are characterized by rapid synthesis changes driven by transcription and rapid 

protein degradation. We were able to track proteins that show dramatic changes in the post-

translational modifications, namely phosphorylation and acetylation. We have made all this 

data available in an easily accessible browser.

There are of course inherent limitations to our interpretations. Bulk measurements limit us in 

ascribing changes to specific regions of embryos. Relative protein quantitation is limited to 

6509 gene products; the total number of detected proteins is slightly greater, about 7000. By 

comparison to our own single sample proteomics (11,300 proteins in the egg (Wühr et al., 

2014)) we know that much depth is left to be explored. This difference is mostly due to the 

significant increase in the duty cycle of the Multinotch MS3 method which we employed for 

accurate multiplexed quantification as compared to the label-free MS2 approach we used 

previously. In the present study RNA quantitation goes roughly three times deeper than 

protein. Despite these limitations, the work presented here is by far the deepest known 

exploration of relative protein changes in embryogenesis.

Our data allowed us to resolve the apparent conflict between protein measurements and 

mRNA measurements, using a simple model for expression kinetics that assumes that the 

observed median rates of protein synthesis and degradation apply to all proteins. Given the 

initial protein level and mRNA kinetics, we can then make an accurate prediction of protein 

levels throughout development. The excellent agreement between model and experiment 

indicates that the spread around the mean values for protein synthesis and degradation 

mostly represents measurement error. Using this model, appropriate localized mRNA 

measurements could allow tissue- and region-specific protein dynamics to be calculated, 

aiding in the interpretation of morpholino experiments that could be confounded by the 
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presence of lingering maternal protein. However any specific protein might have an atypical 

rate of synthesis (per mole of RNA) or degradation. The most drastic modifications of the 

composition of the egg take place in the least abundant proteins. By stage 33 about 85% of 

the less abundant proteins are newly synthesized, as compared to under 30% for the most 

abundant proteins. Much of the change closely tracks RNA expression and appears to be 

driven by transcription, rather than translational control.

We designed our study of RNA around its intersection with protein data, and we have 

therefore focused solely on coding sequence. We have not yet attempted to distinguish 

among splice variants. The rich dataset we have made available can now be used to 

investigate these issues. Our rather limited study of PTMs could also be greatly expanded by 

enriching for modified peptides with antibody precipitation or chromatography.

Our protein data represent generally the most abundant genes with coverage down to about 

the 10 nM range. This level of analysis offers insight into the general strategy of protein 

regulation during development from egg to hatching. The unfertilized egg is provisioned 

with many materials that are maintained without much loss up to the feeding tadpole stage. 

As yolk is not consumed until after gastrulation (Jorgensen et al., 2009; Vastag et al., 2011), 

the protein complement of the embryonic cells must be similar to that in the earliest 

cleavage divisions. The non-yolk protein made before the tailbud stage is very small 

compared to the non-yolk endowment from the egg. To change its protein composition the 

embryo must thus either transcribe and translate new genes or degrade or modify old 

proteins, but new transcription is very rare before the MBT. Our data show that many 

proteins remain virtually unchanged until the beating heart stage (2 days of development, 

corresponding to about 10 days of mouse development). In many cases an unchanging 

protein level stands in contrast to large excursions of individual mRNA levels that have no 

known consequence, raising the question of whether these are gratuitous and simply not 

selected against (Gerhart and Kirschner, 1997). It is not known whether these RNAs are 

being translated, whether proteins are being degraded at a rate that would compensate for 

their synthesis, or whether transcription is highly localized. Unless we hypothesize precise 

cytoplasmic localization of proteins in the egg or the existence of intercellular shuttling 

mechanisms, we must assume that many protein deposits end up mis-placed and are slowly 

degraded and diluted without much effect.

There is an extensive literature speculating that in the embryo, with its rapid nuclear 

proliferation and small nuclear to cytoplasm ratio, extensive protein regulation is occurring 

at the level of translational and protein degradation. We found virtually no convincing 

examples of this, outside the cell cycle. Although we can predict most protein data 

accurately from mRNA levels, the outliers in our analysis may be the most interesting, 

providing information on unusual types of translational control. Our work relieves many 

concerns about the reported discordance of RNA and protein expression seen in many 

publications, but provokes questions about which proteins are chosen to be maternal and 

which are chosen to be actively regulated by transcription. Finally, these studies should now 

focus our attention on protein modification as a probable source of the regulation of the 

many very stable proteins that are maternally provisioned and maintained throughout the 

early stages of development.
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Experimental Procedures

Xenopus laevis J-line embryos were collected according to NF system (Nieuwkoop and 

Faber, 1994) at stages 0, 2, 6, 6.5, 7, 8, 8.5, 9, 10, 12, 14, 16, 18, 20, 23, 26, 30 and 33. 

Embryos were de-jellied in 2% cysteine, pH 7.8, and flash frozen for later preparation.

Total RNA was isolated using TRIzol. Two distinct rounds of RNA sequencing were 

performed: the first using poly(A) enrichment, the second using ribosomal RNA depletion. 

For both libraries: barcodes for multiplexing were added during the amplification PCR. 

Epicenter FailSafe PCR enzyme mix was used in the amplification step. Libraries were run 

on High Sensitivity DNA chips on the Bioanalyzer 1000. Size selection 350-600 bp was 

performed using the Pippin Prep automated electrophoresis system from Sage Science with 

2% agarose cassettes. Samples were purified post size selection using MinElute columns and 

run again on High Sensitivity DNA chips on the Bioanalyzer.

Sequencing was performed on Illumina HiSeq-1000 instruments. Paired-end 100 bp reads 

from mRNA libraries were adapter/quality trimmed and filtered. Ribosomal reads were 

removed and the remaining high quality paired reads were aligned to the reference set using 

Bowtie (Langmead et al., 2009) with default parameters. RSEM package (Li and Dewey, 

2011) was used to determine abundance estimates for all transcripts, and those transcripts 

having little read support were filtered out.

MS sample preparation and data-analysis was performed essentially as previously described 

(Wühr et al., 2015). Embryos were lysed and yolk removed via centrifugation (Wuhr et al. 

2014). Proteins were purified via methanol chloroform extraction (Wessel and Flügge, 

1984), digested with LysC and labeled with six-plex TMT. LC-MS experiments were 

performed on an Orbitrap Elite (Thermo Fischer Scientific) using the MultiNotch MS3 

method (McAlister et al., 2014). For quantification we only used peptides that matched to 

only one protein in the reference database. For the quantification of each protein we used a 

weighted sum of TMT Signal/FT-Noise intensities of its assigned peptides.

For mapping of both mRNA and protein data (respectively the short sequences for RNA-Seq 

and peptide-Spectra matches for MS) we used as a main reference X. laevis genome 

assembly (DoE JGI REF; v6r1: a total of 43,013 sequences) downloaded from Xenbase 

(Bowes et al., 2010).

Statistical Analysis and Modeling

Cosine similarity is a measure of similarity between two vectors of an inner product space 

that measures the cosine of the angle between them.

We estimate protein concentration based on MS1 ion current prorated to the isobarically 

labeled fractions (Wühr et al., 2014). We estimated absolute mRNA concentration by 

dividing the total messenger RNA abundance in the embryo proportionally to FPKM counts.

MATHEMATICA was used to fit protein synthesis and degradation rates using the 

respective mRNA and protein concentration data. To prevent over-fitting we used BIC to 
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compare goodness of fit for alternative models. MATHEMATICA notebook which allows 

for interactive exploration of the model setting for any gene is available upon request.

Data—The mRNA and mass spectrometry proteomics data have been deposited to the GEO 

repository with the dataset identifiers GSE73905, GSE73870. The mass spectrometry 

proteomics data have been deposited to the ProteomeXchange Consortium (Vizcaíno et al., 

2014) via the PRIDE partner repository with the dataset identifier PXD002349. As part of 

this publication we provide a proteomic and transcriptomic data Web browser: http://

kirschner.med.harvard.edu/MADX.html

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Early Embryonic Stages in X. laevis
(A) mRNA and protein were collected from various stages of development. (B) The dataset 

combines temporal profiles of 27877 mRNA and 6509 proteins and egg concentration data 

for 9728 proteins. (C) A histogram of ∼8000 cosine distances between published and new 

mRNA profiles. Three sample mRNA profiles – Chordin, Tenascin N and Secernin are 

given as published (solid) and new RNA-Seq data (dashed). (D) A histogram of 35 cosine 

distances between published and new protein abundance changes. Three proteins quantified 

via Western blot (solid) and multiplexed proteomics (dashed) with representative cosine 

distances color coded.
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Figure 2. Allo-alleles are Concordant in both Protein and mRNA Expression
(A) Peptides with a single amino-acid difference (red) used to distinguish the allo-alleles. 

(B) mRNA and protein expression in allo-alleles of DAPL1. (C) Histogram of cosine 

distance over temporal expression in 164 allo-allele pairs of proteins (left) and 630 pairs of 

mRNA (right). Median cosine distances are 0.006 and 0.04 respectively. Median Pearson 

correlations are 0.94 and 0.85 respectively. Cosine distance between protein and mRNA pair 

of DAPL1 profiles is 0.004 and 0.03 respectively, exemplifying the median discordance as 

shown by colored triangle positions. Gray histograms show the baseline distribution 

obtained by randomly re-matching allo-alleles. (D) Scatter plot of cumulative protein 

concentration for allo-alleles. Overall rank correlation between allo-alleles is 0.50.
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Figure 3. Most Proteins Change Little in Level from Egg through Tailbud Stages
(A) K-means clustering of relative protein abundance into nine clusters using cosine 

distance, labeled by the number of proteins which fall into each cluster represented by the 

median curve. Thickness of the median line reflects the number of proteins in the cluster. 

(B) Histogram of protein dynamicity shows that most proteins do not change much within 

the surveyed period. The insert shows representative examples: flat (gray dashed line) TPI1 

the triosephosphate Isomerase 1 is among the flattest possible with Δ = 1.0e-04. RPL11 

(black) is at the median of the dynamicity distribution (Δ = 0.0162; 1 degree difference. 

OCM2 (a calmodulin) and one of the isoforms of hemoglobin zeta (HBZ), a form of alpha 

globin produced in the yolk sack of mammals are among the most dynamic (Δ = 0.571; 35 

degrees difference) proteins. Color code: red for dynamic, black for flat. (C) Highly 

abundant proteins are generally flat, while low abundance proteins are mostly dynamic. 

Density plot of protein absolute concentration in the egg against dynamism. Black circles 

show two TPI1 (triosephosphate isomerase 1) which are very highly abundant (1 and 5 μM 

in the egg) while flat (Δ = 0.002 and 0.004) and red circles show positions of OCM2 (a 

calmodulin) and HBZ (hemoglobin zeta)- very dynamic (Δ of 0.47 and 0.52) low abundance 

genes (2 - 20 pM in the egg).
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Figure 4. Temporal Expression of Tissue-specific proteins
(A) Histogram of tissue specificity over all measured proteins with the lowest and the 

highest 25% quantiles color-coded. Sample unspecific genes are elongation factors and 

proteosome while specific are myosin and creatine kinase. (B) Fraction of “non-Specific / 

Specific” proteins found in two most representative clusters.
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Figure 5. Discordance of Temporal Patterns in mRNA and Protein Expression
(A) Rank correlation (Spearman) within developmental stage between protein and mRNA 

temporal patterns for ribo-depleted and poly-A enriched methods of mRNA measurement. 

(B) Histogram of Pearson correlation between protein and mRNA temporal change patterns. 

(C) Exemplary mRNA/protein time series. The ordinates represent relative concentration of 

protein to mRNA. Each plot shows estimated absolute concentration of mRNA and protein. 

(D) Mutual information between the temporal pattern of expression for mRNA and protein 

presented as co-clustering into three key trends. Grey scale background reflects the number 

of genes in each cluster. The left column illustrates that a flat protein pattern may 

correspond to any mRNA pattern, but if the protein is dynamic, it usually follows respective 

change in the mRNA concentration – see top of the right column for induction. Criss-cross 

patterns of anti-correlation are rarely observed – bottom of the right column.
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Figure 6. Mass-action Kinetics Equation Results in a Plausible Model of Embryonic Protein 
Economy

(A) Robust fitting of solution to the equation  is done by searching a 

combination of synthesis and degradation rates minimizing the mean square difference in 

protein level (see equation above the plot). Beige stripe shows 95% confidence band for 

protein dynamics which corresponds to the 95% confidence range in synthesis and 

degradation rates. This region includes actual protein measurements marked via green discs. 

The no-degradation model is selected. (B) Venn diagram of models of different complexity. 

(C) Histograms of half-life (left) and synthesis rate (right). Half-life is given in hours, while 

synthesis rate in moles of protein synthesized per mole of mRNA per hour. (D) Histogram 

of Pearson correlation for model-based vs measured protein expression for a model 

assuming median synthesis and median degradation rates while using the actual initial 

concentration.
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Figure 7. Embryonic protein economy
expressed as gradual replacement of maternal by zygotic protein, integrated over all proteins 

fitted by our model and extrapolated to the whole embryo.
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