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SUMMARY

There exist similarities and differences in metabolism and physiology between normal 

proliferative cells and tumor cells. Once a cell enters the cell cycle, metabolic machinery is 

engaged to facilitate various processes. The kinetics and regulation of these metabolic changes 

have not been properly evaluated. To correlate the orchestration of these processes with the cell 

cycle, we analyzed the transition from quiescence to proliferation of a non-malignant murine pro-

B lymphocyte cell line in response to IL-3. Using multiplex mass-spectrometry-based proteomics 
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we show that the transition to proliferation shares features generally attributed to cancer cells: up-

regulation of glycolysis, lipid metabolism, amino-acid synthesis, and nucleotide synthesis and 

down-regulation of oxidative phosphorylation and the urea cycle. Furthermore, metabolomic 

profiling of this transition reveals similarities to cancer-related metabolic pathways. In particular, 

we find that methionine is consumed at a higher rate than other essential amino acids, with a 

potential link to epigenetic maintenance.

eTOC Blurb

Lee et al. generate and integrate quantitative time-course proteomic and metabolomic profiling 

data to find that global metabolic reprogramming of an IL-3 activation resembles metabolic 

rewiring in cancer with high consumption of methionine in G1.

INTRODUCTION

In addition to nutrients mammalian cells require extracellular growth factors to grow and 

proliferate (Conlon and Raff, 1999; Pardee, 1989; Sherr, 1994; Zetterberg, 1990). Absent 

such factors, many types of cells survive in a quiescent or G0 state. Re-introduction of 

growth factors will drive these cells into the cell cycle. This process which leads to a change 

of cell state has intrigued researchers from the early days of mammalian cell culture. 

Numerous experiments have been performed with serum deprivation/reintroduction 

protocols to study the kinetics of how cells in the G0 state re-enter the cell cycle (Planas-

Silva and Weinberg, 1997; Zetterberg et al., 1995). In recent proteomic studies T-cell 

activation was used to characterize specifically nuclear and mitochondrial changes as cells 

transitioned from G0 to G1 (Orr et al., 2012; Ron-Harel et al., 2016). While these 

experiments identified several cellular behaviors, we believed that a more global search of 

protein expression could lead to more complete understanding of this important transition. 

Today many of the obstacles to proteome-wide quantitative mass spectrometry (MS) have 

been overcome, but the issues of depth of proteomic coverage still remains with some 
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classes of abundant proteins easily measured and other rarer proteins like receptors, secreted 

signaling molecules and transcription factors under-sampled. Yet for many protein families 

and pathways, the coverage is good enough to be confident about making solid 

generalizations. This is particularly true for the very abundant metabolic enzymes, which 

can provide comprehensive insights into the state of cellular metabolism.

We have characterized the cytokine-mediated transition of the pro-B lymphocyte cell line, 

FL5.12 (McKearn et al., 1985), from a quiescent state to a proliferative state at the 

proteomic level. FL5.12 cells are exclusively dependent on IL-3 for cell growth and 

proliferation, and can be synchronized in the G0 state by IL-3 removal and induced to 

proliferate by adding IL-3. As such, they provide a better-controlled experiment relative to 

addition and removal of the complex mixture of growth factors found in serum. We used an 

FL5.12 cell line that expresses Bcl-2 to prevent apoptosis when IL-3 is removed for several 

days (Nuñez et al., 1990). For analysis we have employed a versatile multiplex method for 

quantitative MS that employs tandem isobaric mass tags that can simultaneously determine 

the ratio of a given protein in several samples (Singh et al., 2014; Thompson et al., 2003; 

Ting et al., 2011). We found that the predominant proteomic changes during transition 

through the cell cycle were metabolic. We bolstered the proteomic studies with mass 

spectrometry-based metabolomics analyses. Collectively, these revealed that intermediary 

metabolism in pro-B cell proliferation bears strong similarity to cancer metabolism, 

including major changes in translation machinery and nucleotide and methionine pathways.

RESULTS

Features of quiescence and cell cycle entry

Cells in the G0 phase of the cell cycle are defined by a lack of proliferation (marked by low 

Ki-67 and high Cdkn1b/p27 expression), reduced cell size, and active autophagy. Reduced 

metabolic activity or flux rates are not always a hallmark of the quiescent state (Lemons et 

al., 2010). IL-3-deprived FL5.12 cells meet several of the qualifications for the G0 state. 

After 36 hours of IL-3 depletion, FL5.12 cells cease dividing, the mean cell size decreases 

and there is a decrease in size variation (Fig. 1A; Fig. 1D). Ki-67 antibody staining declines 

35-fold, as assayed by flow cytometry (Fig. 1B). There is also a decrease in RNA content as 

measured by acridine orange (AO) staining, another reported characteristic of the G0 state 

(Fig. 1C) (London and McKearn, 1987).

When stimulated by IL-3 FL5.12 cells resume growth and proliferate. We characterized the 

kinetics of the quiescent-proliferative transition by measuring G1 length and entry into S 

phase by BrdU-7AAD incorporation and flow cytometry, cell volume by Coulter counter, 

and the expression of various cell cycle markers by Western blot. S phase begins at 8 – 12 

hours for >10% of cells (Fig. 1D). Cell size increases from 350fL to ~550fL as cells go 

through the first cell cycle (Fig. 1E). There is asynchrony in the cell cycle distribution with 

time and this is reflected in the broadening of the size distributions. We profiled cyclins and 

cyclin dependent kinases (Fig. 1F) (Malumbres and Barbacid, 2005; Murray, 2004; Sherr 

and Roberts, 2004). Cyclin E, begins to increase at 8 hours, consistent with the BrdU 

measurements, thus denoting the G1/S transition. Cyclin A, cyclin B and Cdk1 increased at 

16 – 20h, characteristic of the G2-M phases.
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Dynamics of protein expression

Using 6-plex tandem mass tags (TMTs), we measured the relative levels of different proteins 

at different times during the transition from G0 into the cell cycle (Experimental Procedures) 

(Ting et al., 2011). In biological duplicate experiments, we quantitated 43,000 unique 

peptides corresponding to 6,700 unique proteins; >4,700 were common to both experiments 

(Fig. S1A). The relative expression of each protein was defined to be the average profile of 

all corresponding peptides from each experiment. Each temporal profile was normalized by 

its mean value for the purposes of comparison and visualization. 2,666 proteins show well-

correlated profiles between the duplicates; these reproducible proteins were the focus for 

subsequent analysis (Pearson correlation coefficient > 0.5; Datafile S1).

Unsupervised hierarchical clustering of the 2,666 protein abundance changes, using the 

Euclidean distance as a similarity metric after standardization, showed that duplicate 

experiments cluster together at each time point and also recaptured the temporal order, 

suggesting overall gradual changes of protein expression over time (Fig. 2A). The global 

expression pattern yields two different temporal clusters corresponding to a transition phase 

from G0 into G1 (0h and 4h) and another clear transition from mid G1 onwards into S phase 

and mitosis (8h to 20h). There are two main groups of proteins that have opposing 

expression patterns, where one group is up-regulated in G0/G1 and down-regulated in 

S/M/G2 and the other main group exhibiting the opposite pattern. For subsequent analysis, 

we averaged the expression profiles from the duplicate experiments and performed Principal 

Component Analysis (PCA) to obtain a different global view of the data. The first two 

principal components (PCs) explained 86.9% of the total variation (Fig. S1B). The first two 

time points (G0/G1 transition) were clearly distinguished from the remaining time points 

(Fig. S1B), consistent with the hierarchical clustering analysis. Moreover, the two PCs 

identified several individual proteins whose expression variations make a major contribution 

to each PC (Fig. S1B).

To identify individual dynamic proteins, we calculated the maximum fold change (MFC), 

defined as the ratio of the maximum level to the minimum level for a given expression 

profile. The mean value of MFCs of 2,666 protein profiles is ~1.53 and the median is ~1.38. 

There are 240 proteins whose MFCs are greater than 2. The top 2 proteins, Nek6 and 

Phlda1, have MFC of approximately 29 and 18, respectively. Nek6 is serine/threonine-

protein kinase or NimA-related kinase, which plays an important role in mitotic cell cycle 

progression and is also a cancer therapeutic target (Jeon et al., 2010; Meirelles et al., 2014; 

Nassirpour et al., 2010). Phlda1, pleckstrin homology-like domain family A member 1, is 

involved in the apoptotic response (Park et al., 1996; Toyoshima et al., 2004). Nek6 and 

Phlda1 were increased 15- and 13-fold, respectively, from T = 0h to T = 4h (the highest top 

2), suggesting that both mitosis and apoptosis immediately respond to the IL-3 activation for 

the transition from G0 into the cell cycle.

We identified 16 highly confident proteins where all pairs of peptides have Pearson 

correlation coefficients of greater than 0.8 and which suggest that the proteomic data mirrors 

expected cellular responses. Among these are 7 proteins with the maximum fold change 

(MFC) > 4: Fgl2, Nfil3, Eef2k, Junb, Itm2b, Aen, and Rrn3. Fgl2, Nfil3, Eef2k, Junb, and 

Rrn3 were among the top targets based on PCA and MFC above. The expression profile of 

Lee et al. Page 4

Cell Rep. Author manuscript; available in PMC 2017 October 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Nfil3, a transcription factor limited to T cells and related cells, shown in Fig. 2B, 

demonstrates that the data from the duplicate experiments can be very reliable on the 

measured peptide level and that the up-regulation in G1 is as expected for a response to the 

IL-3 activation. Fgl2 (Fibroleukin), with the highest MFC = 9.2, is a 432-amino-acid 

transmembrane regulator in both innate and adaptive immunity. It has a role in the negative 

regulation of regulatory T (Treg) cell proliferation and the positive regulation of B cell 

apoptosis (Shalev et al., 2008). Our data confirm that it should be down-regulated in G0 

reflecting suppression of apoptosis due to Bcl-2 and highly up-regulated in response to IL-3 

peaking at 4h of early G1 (Fig. 2C). Eef2k is a kinase that is involved in translational 

inhibition by suppressing a translation elongation factor, Eef2. Junb, which increases about 6 

fold on going from G0 to G1, is a transcription factor that is up-regulated in response to 

growth factors; Itm2b is a broadly expressed membrane protein of unknown function; it 

continually decreases ~4.5 fold from G0 to G2/M. Aen is an exonuclease downstream of p53 

with a role in amplifying apoptotic signals; its abundance is the lowest in G0, increases up to 

~4.5-fold in mid-G1 and then decreases in the proliferative state of S/G2/M. Rrn3 is a RNA 

polymerase I (Pol I)-specific transcription initiation factor for ribosomal DNA (rDNA). The 

interaction of Rrn3 and Pol I is essential for rDNA transcription and they dissociate upon 

transcription (Hirschler-Laszkiewicz et al., 2003). Its up-regulation by ~4.4-fold between G0 

and G1 is consistent with a growth signal by IL-3 or the increasing abundance of ribosomal 

proteins. The following down-regulation suggests its dissociation from Pol I upon rDNA 

transcription as the growth signal diminishes. In Fig. 2D we illustrate 60 proteins that also 

give highly confident patterns but with smaller MFC and which illustrate the regulation of 

several cellular processes on entering a proliferative phase: cell cycle, IL-3, B-cell receptor, 

and PI3K signaling, autophagy, translation initiation, translation elongation, DNA 

replication, and mitosis.

To obtain more global functional insight we performed functional enrichment analysis by the 

hypergeometric test using Gene Ontology (GO) terms (Experimental Procedures). The most 

significant terms with p-value < 0.001 include nucleolus, ribosome, mitochondrion, 

structural constituents of ribosomes, ATP binding, translation initiation factor activity, 

translation, and rRNA processing, which are mostly up-regulated on entry to the cell cycle 

(Fig. S2). This suggests that translation/protein synthesis related proteins play important 

roles during the proliferative transition of quiescent FL5.12 cells in response to IL-3, in 

agreement with a previous study on T-cell activation entering the first cell cycle (Orr et al., 

2012).

Dynamics of protein modules

We can produce a narrative for one protein at a time that is useful in validating our general 

study of physiological regulation on entering the cell cycle. However, such tedious narrative 

building fails when dealing with poorly characterized proteins or with proteins where there 

was no clear expectation of behavior. To consider the problem in a more objective fashion 

we analyzed the proteomic results in terms of functionally related protein groups or 

modules, which includes but is not limited to physical protein complexes. First, based on our 

previous efforts in other species (Vinayagam et al., 2013), we built a large repository of 

mouse protein modules by systematically compiling known and predicted modules 
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(Experimental Procedures). We then applied the COMPLEAT tool (Vinayagam et al., 2013) 

to analyze our proteomic TMT data and to generate temporal expression profiles of modules 

(Experimental Procedures). We identified significantly enriched modules based on module 

scores and p-values (Experimental Procedures). An example of a module, the condensin 

complex, and its abundance profile is shown in Fig. 3A.

We prioritized dynamically regulated modules using multiple filtering criteria (Fig. 3B to 3E 

and Experimental Procedures). This yielded a final list of 821 dynamic modules with 311 of 

them literature-supported (Fig. 3E; Datafile S1). We found that 10–15% of all protein 

modules from the literature are dynamic during the transition from G0 to the first cell cycle. 

Unsupervised hierarchical clustering of the 311 literature-supported modules clearly 

distinguishes the G0/G1 transition from the cell cycle (Fig. S3A). Thus the behavior of these 

literature-supported dynamic modules show behavior consistent with proteomic changes 

discussed above (Fig. 2A).

To search for other characteristic dynamic features during the cell cycle we identified 

modules whose scores peaked at each time point. The G0 state had the highest fraction of 

32% (Fig. 3F). The peak modules from 4h to 20h in Fig. 3F include physical complexes 

functioning in: IL-3 signaling (4h), transcription initiation (8h), ribosome biogenesis (12h), 

DNA replication (16h), and mitosis (20h). The module at 0h, the citrate cycle, is a group of 

functionally related enzymes to which we pay particular attention in the next section. As a 

means to further functionally support the identified modules, we also built a global 

functional map of the 311 dynamic modules by organizing them using the Gene Ontology 

(GO) enrichment (Fig. S3B). From this map we could manually identify 77 unique modules, 

as confidence builders, functioning in 15 biological processes from which we can expect 

certain expression patterns (Fig. S3B).

The cell cycle entry from G0 shares several of the hallmarks of cancer metabolism

From our global functional map of protein modules, we paid a particular attention to the 

TriCarboxylicAcid cycle (TCA cycle) because all 4 modules show significant coherence of 

expression including the module of citrate cycle (Fig. 3F), also referred to as second carbon 

oxidation (MC2490). Cancer cells, a prototype for proliferative cells (Vander Heiden et al., 

2009), repress mitochondrial metabolism in favor of ATP generation through glycolysis. The 

observed down-regulation of 4 TCA modules suggests that FL5.12 cells behave similarly as 

they exit the resting state and enter the cell cycle. This observation drove us to look at other 

metabolic pathways related to cancer as well as individual metabolic enzymes. We examined 

closely 8 metabolic pathways: the TCA cycle, glycolysis, de novo pyrimidine biosynthesis, 

de novo purine biosynthesis, pyrimidine salvage, purine degradation, lipid synthesis, and the 

urea cycle (Figs. 4 – 5 and S4A – S4H). The urea cycle was included in this list of 

biosynthetic pathways because it has ties to nitrogen and nucleotide metabolism and was 

shown to be down-regulated in some cancer cells (Feun et al., 2008; Phillips et al., 2013).

We detected all the TCA cycle enzymes, as well as the pyruvate dehydrogenase (PDH) 

complex (Pdhb, Pdha1, and Pdhx; see Fig. 4A). Collectively, their temporal profiles show 

consistent and statistically significant down-regulation during the proliferative transition (p < 

0.004; Fig. 4B and Table S1). Note that Pdk1/2/3, the kinase family that inhibits the PDH 
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complex in the entry to the TCA cycle, is up-regulated (Peters, 2003). The down-regulation 

of the TCA cycle is also supported by an overall down-regulation of component proteins of 

the electron transport chain (ETC) complexes (Fig. S4I). In contrast, the behavior in 

glycolysis is just the opposite (Figs. 4C and S4B). Txnip, the inhibitor of glucose transport, 

is down-regulated and Slc2a1 (Glut1), the glucose transporter, is up-regulated during the 

G0/G1 transition.

This was previously observed (Wu et al., 2013) and confirmed by Western blotting in our 

study (Fig. 4C). The activation of glucose uptake is among the best-characterized features of 

cancer metabolism (Bauer et al., 2004; Ying et al., 2012; Yun et al., 2009). Moreover, all the 

ATP generating and rate-limiting enzymes in glycolysis – Hk2/3, Pfkl, Pfkm, Pfkp, and 

Pkm2 – and Eno3 are also up-regulated upon the transition into the cell cycle, suggesting 

that the activation of glycolysis in this context is a highly coordinated process.

All enzymes in the pyrimidine and purine de novo biosynthetic pathways (Figs. S4C and 

S4D), are up-regulated during G0/G1 transition, as expected for cell growth and 

proliferation. Some anabolic enzymes in nucleotide biosynthesis, including rate-limiting 

enzymes, such as Cad, Gart, Adsl, Adss, and Impdh1/2 increase in G1 and reach maximal 

levels after the S phase. The up-regulation of each enzyme group is statistically significant 

(p-value < 0.04; Table S1). In the pyrimidine salvage pathway (Fig. S4E), Uprt and Uck2, 

which convert uracil, uridine, and cytidine to UMP and CMP, are also up-regulated during 

the G1 phase and then down-regulated thereafter. On the other hand, Cmpk1, Entpd3, and 

Nme3, which regulate uridine phosphate levels, are down-regulated. In the purine 

degradation pathway (Fig. S4F), most enzymes are down-regulated. The coordinated up- and 

down-regulation of the biosynthesis and salvage pathways, respectively, illustrates how the 

cells regulate the generation of new nucleotides for genome duplication. Acetyl-CoA 

carboxylase 1 (Acaca), the rate limiting enzyme in fatty acid synthesis that converts acetyl-

CoA to malonyl-CoA, Fatty acid synthase (Fasn), and HMG-CoA synthase (Hmgcs1) are 

up-regulated in the G1 phase and would seem to accelerate lipid biosynthesis, presumably to 

support biomass generation. In addition, we find that a cytoplasmic fatty acid binding 

protein, Fabp5, is up-regulated in the proliferative state of G1 to S (Fig. S4G). Fabp5 has 

been shown to be highly up-regulated in human breast cancers and is a prognostic marker 

and a potential therapeutic target (Levi et al., 2013; Liu et al., 2011).

The canonical urea cycle consists of 5 enzymes but not all 5 enzymes are necessarily 

expressed in all cell or tissue types (Morris, 2002). We detected 3 enzymes: carbamoyl 

phosphate synthase 1 (Cps1), argininosuccinate synthase (Ass1), and argininosuccinate lyase 

(Asl), which are all down-regulated upon IL-3 activation (Fig. S4H). In particular, the rate-

limiting enzyme, Cps1, exhibits a dramatic 4.8-fold decrease in its abundance during the 

first 4 hours of the G0/G1 transition. The down-regulation of the urea cycle presumably 

favors the use of nitrogen for biosynthetic purposes of cell growth, over the excretion of 

urea. The down-regulation of the 3 enzymes as a group is statistically significant (p-value < 

0.02; Table S1).
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Correlation of metabolite levels with enzymes

We were interested in whether the very clear changes in metabolic enzymes were reflected 

in their metabolites. Using a general metabolomics platform (Yuan et al., 2012), we detected 

291 metabolites at the 6 time points in biological triplicates and obtained a filtered list of 

155 metabolites for subsequent analysis (Experimental Procedures; Datafile S1). 

Unsupervised hierarchical clustering revealed that the data are reproducible and that the 

metabolomic profiles are similar between neighboring time points (Figs. S5A and S5B). 

However, unlike the global proteomic changes that show significant changes at the G0/G1 

transition (Fig. 2A), the global metabolomic changes are seen as cells begin to enter S phase 

(T = 12h onwards). 106 metabolites show coefficients of variation (CVs) less than 0.4 at all 

time points, which we consider as confidently measured.

In order to make a comparison between protein enzymes and metabolites, we mapped all 

confidently measured metabolites to the 8 metabolic pathways discussed above. The vast 

majority of enzymes show consistent patterns but this is much less true for their metabolites. 

The fluctuation of metabolites is also greater than that of enzyme levels (MFC = 7.2 vs. 4.3, 

respectively). Enzymes that are consistently down-regulated in the TCA cycle, showed 

variable metabolite patterns (Figs. 4A and 4B). Some metabolites such as citrate, isocitrate, 

alpha-ketoglutarate, fumarate, and malate are up-regulated during the G0–G1 transition. In 

glycolysis (Fig. S4B), the proteomics data showed that the abundance of the glucose 

transporter (Glut1) increases and that the profiles of rate limiting enzymes such as Hk2/3, 

Pfkl/m/p, and Pkm2 are suggestive of increased glycolytic flux. This is not altogether 

surprising as we would expect to have seen greater correlations of enzyme level with 

metabolite flux, since enzymes would increase the rate of the reactions.

A closer correlation between enzymes and their metabolites can be found in pathways other 

than sugar metabolism. In the de novo pyrimidine biosynthesis pathway (Fig. S4C), the 

enzymes are up-regulated, presumably in response to the increased demand for nucleotides 

during cell growth and proliferation. The final product, UMP, is up-regulated as the cells 

pass through the cell cycle, while dihydroorotate is consumed as expected for pyrimidine 

synthesis during cell growth. Similar trends are observed for the purine de novo pathway 

(Fig. S4D). The 12 enzymes and the end products, AMP and GMP, are consistently up-

regulated after entry into the cell cycle. In the pyrimidine salvage pathway (Fig. S4E), the 

anabolic enzymes, Uprt and Uck2, are up-regulated during G1, while the catabolic enzymes, 

Cmpk1, Nme3, and Entpd3, are down-regulated, as expected. Correspondingly, the upstream 

metabolites, uracil, uridine, and cytidine, are down-regulated and the downstream 

metabolites, UMP, UDP, UTP, CMP, CDP, and CTP, are up-regulated over time. In the 

purine degradation pathway (Fig. S4F), the enzymes are down-regulated and the metabolites 

show a sharp decrease in their abundance during the G0/G1 transition. This implies that the 

degradation pathway is not activated, favoring purine synthesis for cell growth. The 8 

metabolites detected in this pathway are down-regulated in a statistically significant fashion 

(p-value < 0.003; Table S1). In the urea cycle (Fig. S4H) carbamoyl phosphate levels exhibit 

a large gradual decrease (MFC = 5.4), presumably reflecting the major down-regulation of 

Cps1. This may also be related to increased pyrimidine synthesis, which consumes 
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carbamoyl phosphate. We also observe corresponding decreases of ornithine and urea, 

possibly reflecting the use of free nitrogen for biosynthetic purposes.

Despite some expected correlations, the changes in the relative abundance of enzymes and 

metabolites are not easily explained. To search for explanations, we looked for correlations 

between enzymes and metabolites in each pathway. We first obtained average enzyme and 

metabolite time profiles (Fig. 5A). The TCA cycle, glycolysis, and lipid synthesis showed no 

obvious correlations between enzyme and the corresponding metabolite levels while other 

pathways show either positive or negative correlations. To better quantify these relationships, 

we calculated absolute Pearson correlation coefficients for all pairs between enzyme 

abundance profiles and metabolite abundance profiles and their mean value in each of the 

seven metabolic pathways, excluding lipid synthesis in which only 1 metabolite (citrate) was 

measured. For each pathway, we performed a statistical significance test for the mean value 

by random sampling of enzymes and metabolites (Experimental Procedures). The 

correlations between enzyme and metabolite profiles are overall better than expected by 

chance (p-value < 0.09) except for the TCA cycle and glycolysis (p-value > 0.4) (Fig. 5A). 

This was expected due to large variation in metabolite abundance considered above. The 

most likely explanation is that metabolites in these pathways are also acted on by enzymes 

in other pathways, which have their own dynamics (Ward and Thompson, 2012). In contrast, 

metabolites in nucleotide metabolism are more restricted to their specific pathways and, as 

such, exhibit correlations.

We also looked for cross correlations between enzyme profiles in one pathway and 

metabolite profiles in another pathway to understand inter-relationships. This modular cross-

correlation analysis generated an asymmetric correlation matrix of the 8 pathways (Fig. 5B). 

The enzymes in the TCA were strongly correlated to the metabolites in the urea cycle but 

those enzymes were negatively correlated with metabolites in glycolysis and TCA. The 

enzymes in those cycles were negatively correlated with TCA metabolites and glycolysis 

metabolites. The metabolites in glycolysis and the TCA cycle are positively correlated with 

the enzymes in the pyrimidine and purine de novo pathways, while they are negatively 

correlated with the enzymes in the purine degradation and the pyrimidine salvage pathway. 

For a further global insight, we paid a particular attention to those cross correlations that are 

better than either of the two within-pathway correlations. As shown in Fig. 5C, the enzyme 

profiles in glycolysis have higher correlations with the metabolite profiles in all the other 6 

pathways than those in glycolysis itself. This again supports the fact that glycolytic 

intermediates are used as precursors for several other metabolic pathways, among which are 

nucleotide and amino acid biosynthetic pathways. On the other hand, the measured enzymes 

in nucleotide metabolism and the urea cycle do not show such high cross correlations, 

implying that those enzymes are specific to their pathways. We conclude that metabolite 

dynamics show more complex patterns than enzyme dynamics and that nucleotide 

metabolism is a more specialized process than others showing correlated dynamics between 

enzymes and metabolites.
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Extracellular metabolite profiling underscores proliferative metabolic changes

Another very useful perspective of metabolic changes is revealed in how metabolites are 

consumed from and released into the growth medium. The metabolite levels in the control 

fresh media were used as a reference for all time points. Unsupervised hierarchical 

clustering again revealed that the data are reproducible and that the neighboring time points 

have similar profiles, except for T = 0h (Fig. S5C). It is reasonable that the abundance levels 

of extracellular metabolites in the media at T = 0h, which is the G0 state after the 36-hour 

IL-3 deprivation, are similar to those at T = 16h and 20h rather than T = 4h, in accordance 

with longer consumption of/exposure to the extracellular media. By dividing by the control 

media metabolite levels, we obtained a final list of 173 normalized metabolite levels for all 

time points (Fig. S5D; Datafile 1). As a measure of the dynamic range of abundance levels, 

we calculated MFC as above. There are 44 metabolites whose MFC is greater than 4, among 

which 11 metabolites have MFC greater than 10. The top two dynamic metabolites are 

lysine (Lys) and methionine (Met), which showed MFC > 110 and MFC > 50, respectively. 

Both metabolites were consumed from the media by the cells, especially at the G0 and 

S/G2/M phases. Three other amino acids – phenylalanine (Phe), valine (Val) and tryptophan 

(Trp) – show a similar pattern of rapid consumption over time, meaning that they were 

depleted from the media as the cells entered the S phase.

Extracellular levels of pyruvate and lactate increased during the first cell cycle (Fig. 6A), 

which provides clear support for up-regulation of glycolysis during the proliferative 

transition and functionally validating the proteomics data above (Fig. 4B). Interestingly, we 

also observed that lactate in the media was consumed by the cells in G0. This likely reflects 

an effort by these cells to obtain and utilize non-glucose carbon sources since glucose uptake 

is down-regulated through Txnip-dependent repression of glucose transporter expression in 

G0, as discussed above.

Amino acid consumption as a function of the cell cycle

The proliferative transition accompanies up-regulation of translation and ribosome 

biogenesis (Figs. 2D, 3F, S2 and S3B), suggesting correlated changes in amino acid uptake, 

biosynthesis and utilization. To quantify amino acid consumption, we converted the 

normalized relative values into absolute concentrations at each time point based on the 

media formulation (Experimental Procedures; Fig. S6A). The initial amino acid 

concentrations vary significantly from as high as 1.15mM (Arg) to 24.5µM (Trp). Perhaps 

among the most interesting observations was the correlation between uptake and excretion 

among essential amino acids (EAA) and non-essential amino acids (NEAA; Fig. 6B). Like 

αKG, Glu was released from cells (0.39mM in G0 and 0.16 – 0.37mM in the first cell cycle; 

Fig. S6A) suggesting a large role for Gln in nucleotide biosynthesis and the release of Glu. 

Studies in cancer cell lines support this interpretation (Jain et al., 2012; Marin-Valencia et 

al., 2012). We also observe that the resting population (36 hours without IL-3) and the 

proliferating population in the late G1 phase (8h – 12h) consumed amino acids to a similar 

degree.

Focusing on the nine measured EAAs, we calculated the difference in amino acid 

consumption at two adjacent times to obtain the consumption rate in 4-hour intervals. In 
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addition, we used the relative frequency of EAA abundance in proteins to normalize uptake 

of a specific EAA to the rate of protein synthesis, assuming no other potential functions of 

these amino acids. For this purpose, we used the evolutionarily observed frequencies from a 

previous study (King and Jukes, 1969), which turns out to remain relatively constant 

regardless of the biological context (Fig. S6B). The normalized consumption plot revealed 

that Met (whose observed frequency in proteins is 1.8%) was consumed more than the other 

8 measured EAAs (whose average frequency in proteins is 4.9%) by about 2-fold during the 

late-G1 to S phase (8h – 16h; Figs. 6C and S6C – S6E). Met and the average of the other 

EAAs were consumed most during the late G1 and S phases (8h – 12h), the peak time when 

protein synthesis occurs. However, Met was consumed more at the G1-S phase (8h – 12h) 

than at the G0–G1 phase (0h – 4h) by about 12-fold, compared to 5.6-fold on average for the 

other amino acids. Met consumption becomes even higher than the other EAAs by about 4-

fold if we exclude the conditional amino acid, Arg, whose consumption is highest at the 

early G1 phase (4h – 8h; Figs. S6D – S6E). The early response of Arg uptake to IL-3 

activation is supported by the fact that the arginine metabolism is related to downstream 

production of metabolites such as nitric oxide and polyamines that have an important role in 

cell growth and proliferation (Peranzoni et al., 2007; Satriano, 2004).

Met constitutes the primary metabolic input for S-adenosyl-methionine (SAM) biosynthesis. 

SAM is the cofactor for methyl transfer reactions required to establish the epigenetic methyl 

marks on nascent DNA and histones (DNA and histone methylation) (Shyh-Chang et al., 

2013; Varela-Rey et al., 2014). The peak consumption of Met (G1-S phase) closely tracks 

with the observed patterns in nucleotide biosynthesis, providing a rationale for both its 

relative increased rate of consumption and the cell cycle position at which this occurs. 

Furthermore, a pathway analysis of metabolites whose MFC > 4 shows that two downstream 

metabolites, SAM and S-methyl-5-thioadenosine, exhibit intracellular abundance patterns 

that track 4 hours behind that of Met (Fig. S6F). The importance of Met metabolism was 

also supported by the protein expression profile of Dnmt1, the major DNA methyltransferase 

for CpG cytosines to maintain the methylation pattern during replication (Fig. 2D), which 

peaks during the S phase following high Met consumption during G1. There is also elevated 

expression of other Met-consuming epigenetic enzymes, including methionine synthase, 

Mtr, peaking at T = 12h (G1-S phase), S-adenosylmethionine synthetase isoform type-2, 

Mat2a, peaking at T = 8h (mid-late G1 phase), lysine methyltransferase, Smyd2, peaking at 

T = 12h, and arginine methyltransferase, Prmt7, peaking at T = 12h, with MFC between 1.4 

and 3.8 (Fig. 6D). Moreover, 1-methylnicotinamide (1MNA), which was recently reported to 

play a role as a methylation sink after obtaining the methyl group from SAM in the Met 

cycle in tumor cells (Ulanovskaya et al., 2013; Ye et al., 2017), is highly secreted in our 

system with more than 16-fold increase in the media from T = 12h on (Fig. 6D). The 

abundance of its precursor metabolite, nicotinamide, in the media is reduced as well as its 

intracellular abundance, as expected (Fig. 6D). We further correlated Met consumption with 

the levels of 5 histone tri-methylation marks: H3K4me3, H3K9me3, K3K27me3, 

H3K36me3, and H3K79me3 (Fig. 6E). The peaks of intracellular Met and SAM at 4h and 

8h overlap with the peaks of the 5 tri-methylated histones at 12h, suggesting Met was also 

consumed for histone methylation through SAM.
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DISCUSSION

Our model system of FL5.12 cells in response to IL-3 is perhaps a superior model for the 

G0/G1 transition to the more common serum-starvation and refeeding experiments that carry 

with them the complexity of signals in serum and the concerns of synchronization and re-

activation (Cooper and Gonzalez-Hernandez, 2009). While there still exists a significant 

fraction of cells that loses synchrony in our system along the cell cycle, a significant sub-

population of cells remarkably gave rise to major known characteristics and features of each 

cell cycle phase as evidenced in Figs. 1F and 2D. Therefore, our study improves a molecular 

understanding of cell cycle in a more quantitative way despite potential limitations and 

caveats regarding intrinsically incomplete synchrony in our system such as difficult 

interpretations of metabolite abundance profiles discussed below.

Dynamicity of the functional protein modules registered unambiguously in our proteomic 

measurements. Enzyme abundance profiles revealed many aspects of cellular metabolism 

whose regulation by the cell cycle has previously not been as well appreciated. The 

metabolite profiling was more difficult to interpret. Whereas the proteomic data registers the 

enzyme levels, which would be expected to correlate with the flux through the pathways, 

steady state metabolite concentrations can take high or low values under conditions of high 

flux. For such reasons, steady state metabolite levels are hard to relate to enzyme levels. In 

addition, numerous metabolites in central carbon metabolism can be substrates/products of 

multiple reactions in independent pathways, which can confuse any analysis based solely on 

the enzyme concentrations of the core pathways. Experimental measurement of flux using 

labeled substrates would help clarify these issues as well as using better-synchronized cell 

populations.

The changes of metabolic state in the G0–G1 transition in the pro-B lymphocyte line invite a 

comparison to cancer. Although there have been several studies of gene expression, 

proteomics, and metabolism in proliferation and quiescence (Coloff et al., 2016; Lemons et 

al., 2010; Valcourt et al., 2012; Venezia et al., 2004), a quantitative description of the 

proteome of G0 cells and their transition into the cell cycle has been generally lacking. Our 

proteomic survey shows that they are remarkably similar to recent studies of the G1 state in 

the cancer metabolism literature, where the cells are in a constant proliferative state (Munoz-

Pinedo et al., 2012; Schulze and Harris, 2012; Wheatley, 2005).

The metabolic profiling of extracellular metabolites revealed that Met consumption 

dramatically increases during the G1 phase compared to other EAAs. This would not be 

expected if all EAAs including Met were consumed only for protein synthesis. In that case 

the amount of each EAA should reflect its relative abundance in the proteome. A similar 

observation was made for L-arginine in a recent proteomics and metabolomics study of 

activated human naïve T cells (Geiger et al., 2016). An explanation for the high consumption 

of Met might be that it has additional functions, such as a source of methyl groups for 

protein methylation including epigenetic marks (Waterland, 2006). Alternatively, highly 

proliferative cells could drain methyl groups from the Met cycle into 1-methylnicotinamide 

(1MNA), decreasing histone/protein methylation (Ulanovskaya et al., 2013). Both appear to 

happen. We find that extra-cellular nicotinamide and 1MNA are anti-correlated with 
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intracellular nicotinamide and 1MNA (Fig. 6D), which could lead to a decrease of histone/

protein methylation, despite higher Met intake. However, the proteomics data also support 

increased intracellular Met use. 5-methyltetrahydrofolate-homocysteine methyltransferase 

(Mtr), an enzyme involved in Met synthesis, peaked at G1-S (Fig. 6D) and the major DNA 

methyltransferase for replication, Dnmt1, as well as its interacting protein, Dmap1, for 

transcriptional repression, are up-regulated during S phase (Rountree et al., 2000) (Fig. 2D). 

These 3 up-regulated proteins have each been investigated as therapeutic targets in cancer 

(Cheray et al., 2013; Tang et al., 2008). We also observed several other up-regulated 

methyltransferases such as Dot1l, Prmt3/5/7, Smyd2, Ezh2, Dnmt3b (Figs. 6D and S7A). On 

the other hand, we observe diverse patterns of 7 histone demethylases: Kdm1, Kdm3a, 

Kdm3b, Kdm4a, Kdm5b, Kdm5c, and Kdm6b (Fig. S7B). Although we cannot attribute 

histone specificity of the individual methylating enzymes, the 5 histone trimethylation marks 

showed a temporal correlation with the levels of Met and SAM in their peak abundance 

levels (Fig. 6E). A recent study also showed that histones could serve as a methylation sink 

(Ye et al., 2017), in addition to 1MNA. Moreover, the up-regulation of Met and SAM from 

the mid-G1 phase is correlated with the down-regulation of the two protein modules, SIRT1-

LSD1 complex (MC289) and CtBP core complex (MC1067), which have roles in histone 

demethylation to repress target genes (DNA methylation in Fig. S3B). We also note that 

homocysteine, a metabolite in the Met cycle, shows an opposite regulation pattern to Met 

and that the up-regulation of homocysteine is accompanied by down-regulation of 

glutathione peroxidase 1, Gpx1, a situation found in hyperhomocysteinemia (Fig. S7C) 

(Handy et al., 2005). This suggests an additional demand for Met, which contributes to the 

interpretation of Met levels. The importance of Met and SAM for growth seems 

indisputable; a recent study reported that depletion of either Met or SAM induced G1 cell 

cycle arrest in FL5.12 and its derivative cells (Lin et al., 2014).

The metabolomic and related proteomic map of IL-3 activation is summarized in Fig. 7. It 

bears strong resemblance to features attributed to cancer cells. Based on our results outlined 

in this model, we suggest that IL-3 mediated activation of the cell cycle is similar to cancer 

in several important ways as follows and shed light on cancer metabolism. Modules and 

proteins that are highly abundant in G0 are then abundant again from the S phase onwards 

(Fig. 7A, purple and blue bars of “modules” and “proteins”, respectively). These changes 

offer clues about how cancer cells may adapt in nutrient-deprived states (G0), and how they 

progress after tumorigenic transformation (S phase onwards). Dynamic changes in 

intracellular metabolite levels are evident in G0, early G1, S, and G2/M phases (MFC > 

2.49; Fig. 7A, yellow bars of “intra”). These results suggest that metabolic activity is most 

evident during these stages of the cell cycle. These cells are the most avid for extracellular 

nutrients (i.e. uptake) in early G1, S and G2/M phases (Fig. 7A, green bars of “extra in”). On 

the other hand, metabolite release occurs mostly in G0 and G2/M phases (Fig. 7A, red bars 

of “extra out”). These results parallel the catabolic (nutrient breakdown for energy) versus 

anabolic (nutrient capture for biosynthesis) phases of the cell cycle. Based on this, we can 

hypothesize a potential relationship between our model and cancer studies: cancer 

adaptation occurs in G0 (e.g., Eef2k and Eif4e3), oncogenic transformation in G0/G1 (e.g. 

Nek6 and Phlda1), and cancer progression during the first cell cycle (e.g. Rrm2). Among 

cancer types, our study will be immediately relevant as a tool to understand underlying 
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molecular mechanisms of acute myeloid leukemias (AMLs), which possess abnormalities of 

the IL-3 receptor alpha chain, IL-3Ra or CD123 (Munoz et al., 2001; Steelman et al., 2004; 

Testa et al., 2014; Testa et al., 2004).

A major question in the field of cancer metabolism concerns how to target metabolic 

features of cancer cells that are often shared with normal proliferative and/or stem cells 

(Vander Heiden, 2011). Given that many of the metabolic characteristics of the proliferative 

transition in our system are seen in cancers, our findings can be explored carefully for 

therapeutic windows based on cancer metabolism. Furthermore, we also expect that our 

system provides insight into cancer metabolism directly and how its dysregulation can be 

used to select metabolic enzyme targets, pathways and networks (Zhao et al., 2013). In 

particular, nucleotide-metabolism-targeted chemotherapies have high associated toxicities 

because this is a feature shared with normal proliferative cells.

EXPERIMENTAL PROCEDURES

Experimental Model

A murine pro-B lymphocyte cell line, FL5.12-Bcl-2, was a gift from Dr. Anthony Letai at 

Dana Farber Cancer Institute. The cells were cultured in RPMI 1640 (Invitrogen) 

supplemented with 10% calf bovine serum (ATCC, catalog #30-2030), 1% 100× penicillin/

streptomycin (Gemini), 1% Geneticin (Invitrogen, catalog #10131-035), and 50mM 2-

mercaptoethanol (Sigma/Aldrich), and 3ng/ml IL-3 (R&D Systems, catalog #403-ML-010). 

For the G0 synchronization, the cycling cells were washed 3 times with warm PBS and then 

cultured in the same media excluding IL-3 for 36 hours. For activation, the quiescent cells 

were re-suspended in the complete media including IL-3.

Cellular and Molecular Assays

Cell number counting, cell size measurement, acridine orange assay, BrdU assay, and 

Western blotting are described in Supplemental Experimental Procedures.

Tandem Mass Tags (TMT)-Mass Spectrometry Proteomics

For details, see Supplemental Experimental Procedures.

LC-MS/MS Targeted Mass Spectrometry Metabolomics

For details, see Supplemental Experimental Procedures.

Bioinformatic and Statistical Analysis

Quantification of abundance levels of proteomics, metabolomics, and protein modules was 

detailed in Supplemental Experimental Procedures. In general, p-values less than 0.05 were 

considered significant.

Data and Software Availability

The proteomics, metabolomics, and protein modules profiling data processed in this study 

are available in the spreadsheet file with this article online (Datafile S1). All software is 

freely available and listed in the Resource Table.
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SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures, 7 figures, and 2 

tables and can be found with this article online.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• Proteomic and metabolomic temporal profiling from G0 to cell cycle in 

response to IL-3

• Global similarities in metabolic reprogramming with cancer cells

• Nucleotide metabolism is highly specialized during the proliferative transition

• Rapid consumption of methionine in G1 serving multiple functions
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Figure 1. The murine pro-B lymphocyte cell line, FL5.12, exclusively depends on IL-3 for growth 
and proliferation
We synchronized cells at a quiescence/resting state or G0 by growing in media without IL-3 

for 36 hours and then released them from G0 into the cell cycle by re-growing them in the 

presence of IL-3. (A) Cell size distributions of cycling cells in the presence of IL-3 and 

resting (or G0) cells in the absence of IL-3 for 36 hours with 7 replicates measured using a 

Coulter counter. (B) The proliferation marker, Ki-67, shows that FL5.12 cells in G0 do not 

express Ki-67 and that the cycling cells sampled at 36 hours express Ki-67. (C) An acridine 

orange (AO) assay distinguishes the resting G0 population from the cycling population by 

the RNA content. The IL-3-deprived G0 cells have lower RNA content than the cycling 
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population. (D) A 30-min incubation with BrdU shows how the FL5.12 cells progress into 

the cell cycle from G0 upon IL-3 stimulation. Samples were collected every 4 hours over the 

20 hours of this study. The G1/S transition occurred between 12 hours and 16 hours for the 

majority of cells. (E) Cell size changes after IL-3 stimulation in duplicates. (F) Western 

blotting analysis of 7 cell cycle markers: cyclins A2/B1/E1, Cdk2/4/6, and Cdc2 (a.k.a. 

Cdk1). Actin was used as a control. The G1/S transition can be seen at around 10h from 

cyclin E; G2/M phases from cyclins A2/B1 and Cdc2.
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Figure 2. Proteomics data of temporal expression and highly confident individual proteins
The data are based on Pearson correlation coefficients (r) between all pairs of peptides from 

the duplicate experiments. (A) Unsupervised hierarchical clustering of 2,666 proteins whose 

expression profiles from duplicate experiments have r > 0.5. (B) A representative expression 

profile from our TMT data. The top second protein from A, Nfil3, is shown. It is a 

transcription factor which positively responds to IL-3. The left panel shows profiles of all 

peptides detected from our duplicate TMT experiments. The right panel shows their 

averaged profiles for the protein itself. Upon the IL-3 activation the expression level of Nfil3 

was highly up-regulated as expected. We use averaged profiles for individual proteins in the 

subsequent main text. (C) Temporal expression profiles of the 6 highly confident proteins 

with MFC > 4. (D) Manually selected confident protein profiles for 7 cellular processes.
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Figure 3. Analysis of multi-protein modules/complexes
(A) An example complex, condensin I complex (MC9), is shown to illustrate how the 

complex abundance profile is derived. Condesin I complex is composed of 5 proteins among 

which Smc2 (grey) was not detected in our TMT experiments. The relative abundance levels 

of the component proteins from the TMT data are color-coded at each time point. Then, the 

COMPLEAT tool generates the complex abundance profile (in black). The x-axis is for the 6 

time points and the y-axis for mean-normalized abundance levels in an arbitrary unit. The 

black square means that a module score is enriched or statistically significant at a given time 

point with a p-value < 0.01. (B) A distribution of coefficient of variations (CV) of temporal 
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profiles of the 3177 significant modules. We chose a threshold of 0.1 to obtain 363 dynamic 

modules. The top 2 modules, formaldehyde assimilation, xylulose monophosphate pathway 

(MC3130) and centralspindlin complex (MC1652), are highlighted. (C) A distribution of p-

values for expression coherence of component proteins in 3177 significant modules. We 

chose a threshold of 0.01 to obtain 1086 dynamic module. The top 2 modules, BRCA1 B 

complex (MC2566) and BRCA1-BARD1-UbcH7c complex (MC2259), are highlighted. (D) 

Scatter plots of fold changes of module scores at the adjacent time steps for 3177 significant 

modules. Based on the histogram of all fold changes, thresholds of 1.1 and 0.9 are chosen 

for up-regulation (in blue) and down-regulation (in red), respectively. The numbers of up-/

down-regulated modules are shown along with the top up-/down-regulated modules 

(asterisked). (E) The final list of 821 dynamic modules is obtained from the union of the 3 

sets of dynamic modules from B, C, and D. We retained only those modules more than 50% 

of whose component proteins have the TMT expression data, and then clustered to generate 

non-redundant modules. We focused on the 311 literature-supported modules (confidence 

score > 10) in this study. (F) The sector plot represents the fraction of modules whose scores 

become the maximum at each time point. Example module profiles are shown at all time 

points.
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Figure 4. Down-regulation of the TCA cycle and up-regulation of glycolysis
(A) Schematic representation of the TCA cycle with temporal profiles of enzymes and 

metabolites detected. Enzymes are shown in blue (average) with duplicates in black and 

metabolites in red (average) with triplicates in black. The x-axis is the 6 time points and the 

y-axis mean-normalized abundance levels in an arbitrary unit. The number in the 

parentheses next to each molecule name shows the maximum fold change (MFC) over the 

20 hours. (B) The average profiles of all 16 enzymes and metabolites in the TCA cycle. The 

enzyme profiles show a statistically significant coherent down-regulation (p < 0.004) unlike 

the metabolite profiles (p < 0.389). (C) Up-regulation of glycolysis was observed through 
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down-regulation of Txnip and up-regulation of Slc2a1 from the proteomics data and high 

release of lactate from the metabolomics data. Western blotting shows consistent expression 

patterns of Txnip and Slc2a1.
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Figure 5. Correlation between enzymes and metabolites for each pathway and cross correlations 
among the pathways
(A) Average abundance profiles of all enzymes and metabolites for 8 pathways detected in 

our experiments. Enzyme profiles are in blue and metabolite profiles in red. All abundance 

levels are normalized to their mean values over the 20 hours. The average values of absolute 

Pearson correlation coefficients between enzymes and metabolites (|r|) and p-values (p) are 

also shown. Not available (NA) for lipid synthesis because it has only one metabolite 

measured (citrate). (B) A heatmap of enzyme-metabolite cross correlations. Notable 

correlation patterns are highlighted in the black and cyan boxes. “E_” for enzymes in rows 

and “M_” for metabolites in columns. (C) The network diagram shows cross-correlation 
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inter-relationships. The nodes represent pathways and a link from pathway 1 to pathway 2 is 

established if enzymes in pathway 1 have higher correlations with metabolites in pathway 2 

than with metabolites in pathway 1 itself, on average. We take absolute Pearson correlations 

for this network for simplicity. Using this representation scheme, we built a hierarchical 

structure of pathway relationships. Note that glycolysis is located at the top of the structure 

connecting to all the other pathways. See Table S2 for all correlation values.
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Figure 6. Media/extracellular metabolite profiling and methionine metabolism
(A) Temporal profiles of lactate and pyruvate. (B) Average normalized consumption rates of 

essential vs. non-essential amino acids (EAAs vs. NEAAs). The consumption of EAAs is 

correlated with up-regulated protein profiles involved in translation. (C) Normalized 

consumption rates of Met and the other 8 essential amino acids. The numbers in the legend 

represents the relative frequency and the fold change of the consumption rates at 8h–12h and 

0h–4h. (D) Protein and metabolite profiles involved in Met metabolism. (E) Intracellular 

levels of 5 histone tri-methylation marks were measured using Western blot and quantified 

by normalizing to tubulin levels. The normalized levels were compared with intracellular 
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abundance patterns of Met and SAM in an arbitrary scale for simplicity with MFC values in 

parentheses.
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Figure 7. A model of IL-3 activation of FL5.12 cells and a relationship to cancer studies
(A) An overview of molecular dynamics from our proteomics and metabolomics data of 

IL-3 activation in terms of 5 classes of most abundant molecules across the cell cycle phases. 

Each color bar at each time point represents a relative fraction (or percentage) of molecules 

in each class of the same color (100%) that have the maximal abundance at that time point, 

showing temporal distributions of most abundant molecular fractions in each class. We only 

selected those molecules in each class whose MFCs are greater than their median values, 

i.e., the top 50%. The 5 classes are: protein complexes/modules in purple (“modules”), 

individual proteins in blue (“proteins”), intracellular metabolites in yellow (“intra”), uptaken 

extracellular metabolites in green (“extra in”), and released extracellular metabolites in red 

(“extra out”). The median MFCs of the 5 classes are 1.24, 1.37, 2.49, 1.3, and 1.66, 

respectively. Several key proteins and metabolites with maximal abundance at each time 
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point are shown in the table. (B) Our model with major cellular and metabolic processes 

most affected or active across the cell cycle phases showing similarities with the typical 

cancer stages.
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