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Chemotherapy is widely used for cancer treatment, but its effec-
tiveness is limited by drug resistance. Here, we report a mecha-
nism by which cell density activates the Hippo pathway, which in
turn inactivates YAP, leading to changes in the regulation of genes
that control the intracellular concentrations of gemcitabine and
several other US Food and Drug Administration (FDA)-approved
oncology drugs. Hippo inactivation sensitizes a diverse panel of
cell lines and human tumors to gemcitabine in 3D spheroid, mouse
xenografts, and patient-derived xenograft models. Nuclear YAP
enhances gemcitabine effectiveness by down-regulating multi-
drug transporters as well by converting gemcitabine to a less ac-
tive form, both leading to its increased intracellular availability.
Cancer cell lines carrying genetic aberrations that impair the Hippo
signaling pathway showed heightened sensitivity to gemcitabine.
These findings suggest that “switching off” of the Hippo–YAP
pathway could help to prevent or reverse resistance to some
cancer therapies.
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Despite the recent excitement surrounding targeted therapy,
cytotoxic chemotherapy remains the bedrock of cancer

treatment. Ultimately, the efficacy of cytotoxic therapy, like
targeted therapy, is limited by drug resistance. Many studies have
focused on genetic mechanisms, both intrinsic and acquired, that
confer resistance to chemotherapy, as well as targeted therapy.
Acquired resistance can occur by genetic mutation during treat-
ment or by selection of preexisting genetic variants in the pop-
ulation. Adaptive (nongenetic or regulatory) responses, such as
increased expression of the therapeutic target or activation of
compensatory pathways, can also influence drug efficacy over
time (1). Despite the widespread prevalence of tumor resistance,
which in many cases may be due to drug resistance, many on-
cologists have noted occasional dramatic responses in patients,
whom they referred to informally as “exceptional responders”
(2). However, despite the many potential biomarkers and our
increasingly sophisticated understanding of the molecular phe-
notype of the tumor cell, we cannot predict exceptional re-
sponders. Instead, clinical regimens are still based largely on
prognostic clinicopathological parameters, such as tumor size,
presence of lymph node metastases, and histological grade (3).
This state of affairs has produced a growing conviction that the
study of drug response and, in particular, the exceptional re-
sponders, could lead to improvements based on personalizing the
choice of targeted and perhaps even cytotoxic chemotherapies.
We began our study of resistance with the nucleoside analog,

gemcitabine, the first-line treatment for locally advanced and
metastatic pancreatic cancer (4). Regrettably, most pancreatic
ductal carcinoma (PDAC) patients treated with gemcitabine do
not respond well to treatment. The 1- and 5-y survival rates for
pancreatic cancers are about 10% and 4.6%, respectively, which
are the lowest survival rates of all major cancers (4, 5). In trying
to understand the resistance to gemcitabine and the variable
response of patients, we unexpectedly found culture conditions
for pancreatic tumor cells that affected their sensitivity to the
drug. In each of 15 pancreatic cancer cell lines that we tested,
resistance to gemcitabine very strongly depended on cell density.
Each cell line was resistant at high density, but each was im-
mediately sensitive when replated at low density, indicating that

the resistance was not due to a preexisting or acquired genetic
alteration, and this led us to describe a physiological means of
drug resistance. The basis for this resistance turns out to be the
activation of the Yes-associated protein (YAP) pathway, and this
occurs by means of the down-regulation of several multidrug
transporters and cytidine deaminase (CDA) (a key enzyme that
metabolizes gemcitabine following its uptake). Overall, these
findings highlight a cell-physiologic mechanism of drug resistance.
“Switching off” the Hippo signaling pathway and thus activating
YAP could present a strategy to overcome drug resistance in
pancreatic cancer and other cancers.

Results
In trying to profile pathways for drug resistance, we unexpectedly
stumbled over a large inconsistency in the published studies of
the cellular response to gemcitabine (SI Appendix, Table S1).
The same pancreatic cancer cell line had been reported as sen-
sitive or resistant in different publications; this was true to dif-
fering degrees for 15 cell lines with varying genetic backgrounds.
Furthermore, there was little consensus among published large
scale Cancer Genome Project studies that measured the effects
of gemcitabine on a large panel of genomically annotated cancer
cell lines (6, 7). Because varying assay conditions such as the
duration, the method of detection, and the density of seeding
were used in these previous studies, we opted to repeat these
studies using a real-time (kinetic) cell growth assay.

Cell–Cell Contact-Dependent Response to Gemcitabine in Pancreatic
Cancer. We used a cell growth assay (Fig. 1B) to determine the
effects of gemcitabine on a panel of pancreatic cancer cell lines.
Cells were plated at low densities (10–25% confluence) and 24 h
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later exposed to gemcitabine in a dose-dependent manner. They
were imaged every 1–3 h until control (vehicle)-treated cells
reached 100% confluence. This assay is not confounded by the
fact that the time required for each cell line to reach 100%
confluence may be very different (as the cell lines have different
doubling times). The dose–response effect of gemcitabine on cell
growth for 15 pancreatic cancer cell lines is shown in Fig. 1C and
SI Appendix, Fig. S1 and Table S2, where the range of previous
studies is also shown. In our experiments, all cell lines tested
under these conditions were sensitive to gemcitabine (EC50 <
200 nM) (Fig. 1C and SI Appendix, Fig. S1). We found similar
responses to gemcitabine in liver cancer cell lines (Huh7 and
FOCUS) and untransformed (HEK293) cell lines (SI Appendix,
Fig. S1).
In the course of these experiments, we inadvertently found

that cells grown in more crowded/dense conditions (40–60%
confluence) were much less sensitive to gemcitabine, relative to
cells grown in less crowded/dense conditions (10–25% conflu-
ence) (Fig. 1D). Every PDAC cell line showed this effect. This
was reflected in the EC50 as well as the Amax, as shown in Fig. 1E,
which demonstrates the striking disparity of sensitivities at high
and low densities. Furthermore, replating cells at low density
restored sensitivity to gemcitabine (Fig. 1F).
The in vitro crowding conditions had no obvious relevance to

the growth conditions in human tumors. Nevertheless, we were
curious how extrinsic factors, such as cell density, could so dra-
matically affect drug sensitivity. One possible explanation was
depletion of the culture medium. Changing culture medium or
addition of insulin or fresh serum has been shown to stimulate
macromolecular synthesis and cell division in postconfluent
cultures (8–10). Replenishing fresh medium, containing serum or
supplemented with 15 different growth factors, including EGF,
FGF, IGF, HGF, PDGF, Wnt3a, Wnt5a, TGFβ, and IL 6, did

not increase the sensitivity of insensitive cells at high-density
conditions to gemcitabine (SI Appendix, Fig. S1). However,
these growth factors had activated their cognate downstream
signaling proteins even in the high crowding conditions (SI Ap-
pendix, Fig. S1). For example, stimulation by IL-6 led to phos-
phorylation of Stat3, whereas stimulation with HGF and EGF
caused increased phosphorylation of ERK, MEK, and S6 pro-
teins (SI Appendix, Fig. S1). Increased Mg2+ concentrations,
which have also been shown to play a role in modulating protein
and DNA synthesis and cell proliferation in cultured cells (11),
also did not increase susceptibility to gemcitabine. Although
supplemental Mg2+ can cause a marginal increase in the growth,
it had no effect on gemcitabine sensitivity in Bxpc3, Aspc1, and
Panc10.05 cells (SI Appendix, Fig. S2). Conditioned medium
from dermal fibroblasts has recently been shown to cause gem-
citabine resistance in colorectal and pancreatic cancer cells,
implying that changes in the tumor microenvironment could al-
ter drug resistance (12). However, exposure of pancreatic cancer
cells to the conditioned media of human dermal fibroblast,
vascular endothelial cells, or other mesenchymal cancer cells
(Panc1) had no effect on gemcitabine response in Bxpc3 and
Panc02.13 cells (SI Appendix, Fig. S2). Finally, coculture of
sparse GFP-labeled Panc02.13 cells with fibroblast or other
cancer cells as a way of achieving high overall cell density pro-
duced the same resistance to gemcitabine found in dense tumor
cell culture (SI Appendix, Fig. S2). These data suggest that a wide
variety of extrinsic cell growth conditions do not affect the sen-
sitivity of pancreatic cancer cells to gemcitabine in crowded
conditions.
It was suggested to us that pancreatic cancer cells might have

become temporarily resistant to apoptosis in high-density growth
conditions. We find that there is no change in the protein levels
of 29 apoptotic signaling proteins, including Bad, Bax, and Bcl2,
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Fig. 1. Cell density-dependent response to gemcitabine in pancreatic cancer. (A) A table illustrating YAP nuclear localization and TEAD transcriptional
activity in low- and high-cell density conditions. (B) A schematic showing live-cell kinetic cell growth assay used to characterize the phenotypic effect of
gemcitabine in a panel of pancreatic cancer cell lines. Gemcitabine-mediated GC50 (50% inhibition in growth compared with control) for each cell line was
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in response to crowding conditions (SI Appendix, Fig. S2). Fur-
thermore, Panc02.13 cells exposed to UV radiation in crowded
conditions underwent apoptosis as assessed by cleaved caspase
3 and 7, and PARP levels (SI Appendix, Fig. S2), suggesting that
crowded cells are not intrinsically resistant to apoptosis. Finally,
replating Aspc1 and Bxpc3 cells at low density (using the original
growth medium containing gemcitabine) immediately reestab-
lished their sensitivity (Fig. 1E), further suggesting that the gem-
citabine response in pancreatic cancer cells is a function of cell
density and not dependent on extrinsic cell culture conditions.
To establish whether the effect of density is related to some

very special characteristic of gemcitabine’s mechanism of action,
we examined the effect of cell crowding on a set of seven diverse
cytotoxic drugs. We initially tested the sensitivity of seven PDAC
cell lines grown at varying density conditions to these seven cy-
totoxic drugs, commonly used in chemotherapy. The cellular
response to both gemcitabine and doxorubicin (a topoisomerase
II inhibitor) was dependent on cell density (using a >100-fold
difference in EC50 as the threshold), whereas the response to
camptothecin, paclitaxel, docetaxel (taxane), and oxaliplatin (plat-
inum) showed weak or no correlation with cell density (SI Ap-
pendix, Fig. S3). That several cytotoxic inhibitors such as taxanes
were equally sensitive in low- or high-crowding conditions further

corroborates our conclusion that cells in high-crowding conditions
are susceptible to apoptosis (SI Appendix, Fig. S3). Overall, these
data suggest that the cellular response of pancreatic cancer cells to
cytotoxic drugs, such as gemcitabine, is greatly influenced by cell–
cell interactions and that this property is shared by some but
certainly not by all cytotoxic drugs. It further shows that the affect
is drug specific, because responses to most antiproliferative drugs
are unaffected by density.

The Hippo–YAP Pathway Controls Sensitivity to Gemcitabine. To
identify signaling pathways that might mediate the density-
dependent responses to gemcitabine, we used reverse-phase
protein arrays to measure 75 signaling proteins in a panel of six
pancreatic cancer cell lines grown in various crowding conditions
(Fig. 2A). As expected, when cell growth is slowed down at high-
cell density, the activities of many growth factor signaling
proteins such as Erk, Akt, and S6 ribosomal proteins are down-
regulated (Fig. 2 A and B and SI Appendix, Fig. S3). More in-
terestingly, we observed (>10-fold) an increase in phosphorylation
of YAP at elevated cell density (Fig. 2B), which was confirmed
by Western blotting in several PDAC cell lines (SI Appendix, Fig.
S3). We also saw smaller but highly significant increases in the
levels of glycolytic enzymes, a significant response that remains
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unexplained. YAP is a potent transcriptional coactivator that
functions via binding to the TEAD transcription factor in the
Hippo pathway (Fig. 1A); it plays a critical role in the control of
organ size and in tumorigenesis (13, 14). Pathway activation in-
activates the YAP protein through its phosphorylation by up-
stream kinases, such as the LATS kinases. Phosphorylation
causes YAP to be excluded from the nucleus and be retained
or degraded in the cytoplasm, where it can no longer activate
transcription (15). YAP phosphorylation and localization was
already known to be controlled by cell density (16). In agreement
with these observations, we observed crowding-dependent nu-
clear localization of YAP in pancreatic cancer cells, that is, nu-
clear localization was only found in cells at low confluence
(Fig. 2C).
Although there is increasing evidence for a role of the Hippo

pathway in cell proliferation, the observed effects here, partic-
ularly at high density, when cells are resistant to gemcitabine, is a
previously uncharacterized feature of this pathway. Although
knockdown of YAP in three different pancreatic cancer cell lines
mildly depressed proliferation (SI Appendix, Fig. S3), it had no
effect on the gemcitabine response. It was also known that Hippo
pathway inactivation, which leaves YAP unphosphorylated and
in the nucleus, can trigger tumorigenesis in mice and that altered
expression of a subset of Hippo pathway genes can be found in
several human cancers (17). When the Hippo pathway is inac-
tivated, YAP is localized in the nucleus in 60% of hepatocellular
carcinomas, 15% of ovarian cancers, and 65% of non–small-cell
lung cancers (17). However, only a small fraction of human
pancreatic tumors exhibited intense nuclear staining for YAP in
late-stage tumors (18). We surmise that the human tumors show
the “crowded, gemcitabine-resistant phenotype.” Verteporfin (a
YAP-TEAD small-molecule inhibitor) (19) had a potent effect
on pancreatic cancer cell growth in low-density growth condi-
tions (Hippo-OFF, EC50, <0.5 μM), but had little effect on
pancreatic cancer cell growth in 3D spheroid assays (Hippo-ON,
EC50, >5 μM) (SI Appendix, Fig. S4).
In cells growing at low density, YAP is localized to the nucleus,

cells are sensitive to gemcitabine, and presumably YAP-dependent
transcription is turned on. At high cell density, YAP is in the
cytoplasm, YAP-dependent transcription is impaired, and resis-
tance to gemcitabine is high. Given these correlations, we asked
whether inactivation of Hippo pathway could restore gemcita-
bine sensitivity under crowded growth conditions. Expression of
a nonphosphorylatable form of YAP (YAPS6A) in Panc02.13
pancreatic cancer cells causes constitutive nuclear localization of
exogenous YAP even at high cell density (Fig. 2C). Expression of
YAPS6A in crowded cells led to an increase in the expression
of YAP-TEAD target genes including AMOTL2 (>10-fold),
CTGF (>3-fold), AXL (>3-fold), and BIRC5 (>2-fold) (SI Ap-
pendix, Fig. S4). Although cells expressing the YAPS6A mutant
or knockdown of NF2 (an upstream stimulator of YAP phos-
phorylation) (20) showed altered morphology and a mildly in-
creased rate of cell growth (SI Appendix, Fig. S4), the increased
sensitivity to gemcitabine (and 5-flurouracil) as measured by growth
retardation or increased apoptosis was much more striking (Fig.
2 D and E and SI Appendix, Fig. S5). NF2 depletion in Panc02.13
cells also restored sensitivity to verteporfin in a high-density
spheroid assay (SI Appendix, Fig. S4). Together, these data
suggest YAP phosphorylation (and its export from the nucleus)
is the critical determinant of resistance to gemcitabine and per-
haps other drugs.
To determine whether the Hippo–YAP pathway regulates the

sensitivity of pancreatic cancer cells to a broader set of oncology
drugs, we screened 119 FDA-approved oncology drugs using the
3D spheroid (high-crowding condition) assay. In this assay, cells
are plated in a round-bottom, hydrogel-coated wells for 2 d to form
compact 3D spheroids (Fig. 2G). Cells are then treated with small-
molecule inhibitors at varying concentrations (10−9 to 10−5 M) and

imaged over 4 d (Fig. 2G). A dose–response curve for each in-
hibitor is calculated based on control (no inhibitor/DMSO)-treated
wells. Most of the oncology drugs tested were ineffective in
blocking the growth of Panc02.13 cells (EC50, >1,000 nM;
Amax, <50%). This is yet more evidence that cell density does not
generally affect resistance to antiproliferative drugs; such re-
sistance is true for only a minority of drugs. Only carfizomob and
dactinomycin showed significant inhibition in these high-density
growth conditions (Fig. 2H). To test the role of the Hippo
pathway in regulating sensitivity, we then exposed Panc02.13
cells expressing the YAPS6A mutant to the same drugs. We
found that 15 drugs showed significantly enhanced sensitivity
(EC50, <1,000 nM; Amax, >50%) (Fig. 2H and SI Appendix, Fig.
S5). These drugs include antimetabolites, anthracyclines, top-
oisomerase inhibitors, and kinase inhibitors, suggesting that the
role of the Hippo pathway in altering the efficacy is not in any
simple way related to the drug’s mechanism of action.

The Hippo–YAP Pathway Modulates Gemcitabine Metabolism and
Export. The diverse chemotypes affected by the Hippo pathway
suggested that a general process of drug availability rather than
regulation of a specific cellular pathway is responsible for the
effects. Drug availability mediated by transport or binding or
export from the cell is known to be a major determinant of the
sensitivity to chemotherapy (21). We first checked that gemci-
tabine was not lost from the medium due to lability or enzymatic
degradation and found that gemcitabine is not labile in culture
media (SI Appendix, Fig. S5). Furthermore, conditioned media
collected from Panc02.13 cells exposed to gemcitabine after 5 d
retained 96.7%. We next considered whether the Hippo pathway
might affect the efflux of gemcitabine and/or its metabolites. To
assess directly gemcitabine efflux in conditioned media of pan-
creatic cancer cells, we used both radiolabeled gemcitabine and
liquid chromatography tandem-mass spectrometry (LC-MS/MS)-
based methods. Panc02.13 cells grown in highly crowded condi-
tions (Hippo-ON) pumped out twofold to threefold more ra-
diolabeled gemcitabine (counts per microgram of protein) in
contrast to cells grown in less crowded conditions (Hippo-OFF)
(Fig. 3A). Another pathway of inactivation and export is the
enzymatic conversion of gemcitabine to a uracil derivative [2′,2′-
difluorodeoxyuridine (dFdU)] by deamination catalyzed by CDA
(22). We measured the efflux of gemcitabine and its deami-
nated metabolite, dFdU, by LC-MS/MS (23) in Panc02.13 cells
expressing YAPS6A or vector control after gemcitabine treat-
ment (Fig. 3B). Panc02.13 cells expressing YAPS6A (Hippo-
OFF) effluxed significantly less gemcitabine (10-fold, P < 0.05)
compared with GFP-expressing cells, in agreement with the ra-
diolabel measurements (Fig. 3B). YAPS6A-expressing Panc02.13
cells also effluxed significantly less dFdU (fivefold, P < 0.05)
compared with GFP-expressing cells. Together, these data suggest
that activation of the Hippo–YAP pathway in high-density cul-
tures increases efflux of gemcitabine and its metabolic conversion
to dFdU, resulting in a lower intracellular gemcitabine concen-
tration (Fig. 3B).
Drug efflux transporters can reduce the concentration of cy-

totoxic drugs in the cell, allowing cancer cells to survive (24). To
investigate which transporters might be regulated by the Hippo
pathway, we profiled the expression of 84 drug efflux trans-
porters in Panc02.13 cells expressing YAPS6A or a control
vector by quantitative PCR. Those include the ATP-binding
cassette (ABC) transporters, solute-carrier (SLC) transporters,
and other transporters, such as voltage-dependent anion chan-
nels, aquaporins, and copper pumps. We found that the mRNA
expression levels of eight transporters, mostly from the ABC
transporter family, significantly decreased (4- to 16-fold, P <
0.05) in Panc02.13 cells expressing the YAPS6A mutant vector
compared with GFP-expressing cells (Fig. 3C). Quantitative
Western blotting also confirmed these findings and revealed that
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the protein levels of these receptors were reduced when the
Hippo pathway is inhibited (SI Appendix, Fig. S6). Similar results
were seen in Panc1, Patu8988S, and Patu8902 cells (SI Appendix,
Fig. S6). Many of these transporters including ABCG2, ABCC3,
and lung cancer resistance protein (LRP) have previously been
implicated in gemcitabine resistance and/or are highly expressed
in pancreatic tumors (23, 25, 26). Expression levels of the
monocarboxylate transporter (SLC3A2), the antigen peptide
transporter (TAP2), and an amino acid transporter (SLC16A1)
were mildly increased (twofold to fourfold, P < 0.05) in
Panc02.13 expressing the YAPS6A construct (Fig. 3C). Because
cell crowding inhibits the phosphorylation and activity of YAP,
which then is retained in the nucleus (Fig. 2 B and C) (16), it
would be expected that the expression of these drug transporters
(ABCG2, LRP, and ABCC3) would be significantly increased
(Fig. 3D and SI Appendix, Fig. S6). On the other hand, the
mRNA levels of uptake transporters for gemcitabine (SLC29A1,
SLC29A2) were not affected by cell crowding or YAP activity (SI
Appendix, Fig. S6). These data show that the activation of the
Hippo pathway at high cell density decreases the expression of
drug efflux transporters, thereby increasing the effective in-
tracellular concentration of gemcitabine.
The activity of the Hippo pathway not only increased the ef-

flux of gemcitabine but also the production of its major me-
tabolite, dFdU (Fig. 3B). Switching off the Hippo pathway (by
depletion of NF2 or expression of YAPS6A) significantly de-
creased both the mRNA (5- to 8-fold, P < 0.05) and protein
levels (5- to 10-fold, P < 0.05) of CDA; these changes should
also increase gemcitabine levels (Fig. 3 E and F). Similar results

were seen in four other pancreatic cancer cell lines (Panc1,
Patu8988S, YAPC, and Patu8902) (SI Appendix, Fig. S6). By
contrast, the level of deoxycytidine kinase (dCK) (the enzyme
involved in the first phosphorylation and activation of gemcita-
bine) was not affected by the Hippo pathway (Fig. 3E and SI
Appendix, Fig. S6). Consistently, we found that cell crowding
increased the levels of CDA (5- to 10-fold, P < 0.05) in several
other pancreatic cancer cell lines (Fig. 3G), which should con-
tribute to the drop in gemcitabine levels and increased drug
resistance. Finally, verteporfin treatment of Panc02.13 cells,
which decreases YAP activity, should be a phenocopy of growth
of cells at high density, where YAP is inactivated and degraded.
As expected, verteporfin caused a significant increase in CDA
levels (threefold, P < 0.05) (SI Appendix, Fig. S6), suggesting
expression of CDA is negatively regulated by the Hippo pathway
and that this does not require direct interaction with a nucleoside
analog.
To further delineate the molecular mechanism of how the

Hippo pathway regulates the levels of gemcitabine efflux pumps
and CDA activity, we assessed TEAD binding sites in the pro-
moter region of ABCG2 and CDA. Transcription factor ChIP-
seq data from the Encyclopedia of DNA Elements (27) revealed
multiple TEAD4 consensus binding sites in the promoter region
of ABCG2, ABCC3, LRP, and CDA. To validate these findings,
we designed synthetic promoter activity constructs comprising
the promoter region of either ABCG2 or CDA followed by a
luciferase gene. Promoter activity of both ABCG2 and CDA was
significantly decreased in cells expressing YAPS6A mutant in both
Panc02.13 (twofold, P < 0.05) and Miapaca2 (threefold, P < 0.05)
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cells compared with GFP vector-expressing cells (Fig. 3H). We
conclude that the Hippo–YAP pathway affects gemcitabine action
in at least two ways: by negatively regulating mRNA expression of
drug resistance proteins and by negative regulating the mRNA for
CDA, thereby modulating export and metabolism of gemcitabine.

Inhibition of Hippo–YAP Pathway Activity Increases Sensitivity to
Gemcitabine in Tumors. Genetic defects that inhibit the Hippo
pathway and increase YAP levels can induce tumors in model
organisms. Such mutations occur in a broad range of human
carcinomas, including lung, mesothelioma, colorectal, ovarian,
and liver cancers (17) (SI Appendix, Table S3). Mutations in NF2
and LATS2 are found in ∼30% of mesotheliomas and mutations
in STK11 are found in 18% of lung cancers (SI Appendix, Table
S3). Previous studies have shown that aberrations in LATS2 and
NF2 inactivate the Hippo pathway and overcome crowding-
mediated YAP inhibition (28). Despite the oncogenic effect of
Hippo pathway mutations, the above studies would predict that
the same inactivating mutations in the Hippo pathway genes
(NF2, LATS2, and STK11) could have an important positive
effect, which can be exploited for chemotherapy: they might be
hypersensitive to gemcitabine even in highly crowded conditions
and increase the effectiveness of treatment. Indeed, we find that
gemcitabine treatment of a broad panel of cancer cell lines har-
boring Hippo pathway genetic alterations from five diverse cancer
types significantly reduced 3D spheroid growth (EC50, <1,000 nM)
(Fig. 4 A and B). Interestingly, each of these cell lines had been
previously found to be extremely sensitive to gemcitabine in in
vitro and some even in mouse xenograft models; however, the
mechanism of sensitivity was unclear (29–35). Furthermore,
previous studies have shown that mutations in STK11 (LKB1) in
lung cancer cell lines confer sensitivity to gemcitabine, whereas
ectopic expression of STK11 causes resistance (36, 37). STK11
has been identified as an upstream kinase that negatively regu-
lates YAP activity (38). Increases in the phosphorylation of YAP
(3- to 4-fold) and in the levels of CDA (12-fold) due to cell
crowding were observed in lung cancer cells expressing wild-type
STK11, whereas relatively subtle changes (pYAP, 1.5-fold; CDA,
2-fold) were observed in STK11 mutant lung cancer cells (SI
Appendix, Fig. S6). We posit that genetic aberrations in the
Hippo pathway might be predictive biomarkers for response to
gemcitabine.
Are defects in the Hippo pathway the major cause of gemci-

tabine sensitivity? We find that restoration of LATS2 expression
in H2052 mesothelioma cells (lackingNF2 and LATS2 expression)
causes resistance to gemcitabine in high-density growth (Fig. 4C).
In crowded conditions, exposure of a low dose (<300 nM) of
gemcitabine to parental H2052 cells (LATS2−/−) significantly
decreases their viability in response to gemcitabine, compared
with the same cells complemented with wild-type LATS2 (Fig.
4C). Restoring the levels of LATS2 in H2052 cells caused an
increase in the mRNA and proteins levels of ABCG2 and CDA
(Fig. 4D and SI Appendix, Fig. S6). LC-MS/MS–based mea-
surement also showed significantly higher amounts of effluxed
gemcitabine (∼10-fold) and dFdU (2- to 3-fold) in the media of
H2052 (LATS2) compared with parental H2052 (LATS2−/−)
cells (Fig. 4E).

Hippo Pathway Inactivation Sensitizes a Diverse Panel of Human
Tumors to Gemcitabine in Mouse Xenografts, and Patient-Derived
Xenograft Models. To assess the gemcitabine response to Hippo
pathway inactivation in tumors, we used a mouse xenograft model
of pancreatic carcinoma cells and patient-derived xenograft
(PDX) models from a variety of solid tumors including human
cancers from non–small-cell lung, esophagus, breast, mesothelium,
ovary, colon, head and neck, sarcoma, and cholangiocarcinoma
(SI Appendix, Table S4). In mouse xenograft studies, two human
pancreatic cancer cell lines (Miapac2 and Panc02.13) expressing

GFP or YAPS6A were injected into athymic mice. Both parental
or GFP-expressing cells grew rapidly, producing palpable tumors
in 5–10 d. When the tumors were ∼200 mm3 (as measured using a
caliper), mice were randomized into treatment and control groups.
The former received i.p. saline injections on alternate days for
2 wk, and the latter received gemcitabine (20 mg/kg in Miapaca2-
YAPS6A and 50 mg/kg in Panc02.13-YAPS6A cohorts). We ob-
served that gemcitabine treatment had no effect on the growth of
Miapaca2-GFP xenografts as previously observed (39), whereas
the growth of Miapaca2-YAPS6A was significantly slowed (Fig.
5A). Similar results were seen in Panc02.13 xenografts where
gemcitabine treatment had no effect on the growth of Panc02.13-
parental xenografts, whereas gemcitabine treatment of Panc02.13-
YAPS6A (50 mg/kg) led to significant regression in the tumor
volume (SI Appendix, Fig. S7). Intratumor measurements of the
levels of dFdU showed significant reduction (greater than four-
fold, P < 0.01) in accumulation of dFdU in Miapca-YAPS6A
xenografts compared with parental controls xenografts (Fig. 5B).
Consistently, we observed greater than twofold induction in apo-
ptosis (measured by levels of cleaved caspase 7 and phosphor-
H2aX) in Miapca-YAPS6A xenografts compared with parental
controls (SI Appendix, Fig. S7). These data imply that switching off
the Hippo–YAP pathway overcomes intrinsic drug resistance in
these models of pancreatic ductal carcinoma.
It would be natural to try to test gemcitabine response in a

mouse model of pancreatic cancer, particularly one that shows a
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stromal response of connective tissue growth, known as desmo-
plasia. Unfortunately, the best established mouse models (such
as KPC, KrasLSL.G12D/+; p53R172H/+; PdxCretg/+) unlike
the human tumors show no activation of YAP (the non-
phosphorylated YAP remains in the nucleus). These tumors
would not be expected to be sensitive to gemcitabine. In fact, this
mouse model and others are already known to be completely
resistant to gemcitabine [the median survival upon gemcitabine
treatment is ∼15 d compared with 10.5 d in vehicle control (40)].
There may be many interesting features in these mouse PDA
models, but, unfortunately, they are not appropriate for studying
the Hippo pathway and gemcitabine responsiveness.
An alternative to an endogenous mouse models for capturing

effects of the tumor environment are PDX models. PDX models
have been shown to retain the architecture and stromal com-
ponents of the original tumor and therefore are thought to more
accurately represent the complex biochemical and physical in-
teractions between the cancer cells and their microenvironment
(41, 42). At the cellular level, PDX models also preserve the
intratumoral heterogeneity, as well as the molecular character-
istics of the original cancer, including copy number variants,
single-nucleotide polymorphisms, and gene expression profiles
(43, 44). Moreover, studies have found that clinical response of
PDXs to therapeutics is correlated with response in patients
(45). When we used PDX models to assess whether YAP acti-
vation sensitizes solid tumors to gemcitabine, we found signifi-
cant effects. Tumors with high YAP activity (YAP staining index)
showed significantly better response to gemcitabine (approxi-
mately twofold difference in percentage tumor growth index,
P = 0.01) (Fig. 5C). Notably, there was no correlation between
gemcitabine response and tumor doubling time (r = −0.07) (SI
Appendix, Fig. S7). In addition, percentage tumor growth index
in response to other cytotoxic drugs including carboplatin and
cisplatin was not affected by YAP staining index (SI Appendix,

Fig. S7). These in vivo data further demonstrate that inactivation
of the Hippo–YAP pathway conferred sensitivity to gemcitabine
in a diverse panel of cancers.
Gemcitabine is a first-line treatment for locally advanced and

metastatic pancreatic cancer. Therefore, in looking retrospec-
tively at clinical response, it is reasonable to assume that the vast
majority of patients were treated with gemcitabine. If Hippo
pathway aberrations affect the response of pancreatic cancer to
gemcitabine during clinical treatment, this might be revealed by
comparing the survival of patients with tumors bearing muta-
tions in the Hippo pathway to those with tumors in which the
Hippo pathway was intact. In two independent studies using
exome sequencing of DNA from pancreatic cancers, we found
that high levels of YAP-dependent genes (AMOTL2, CTGF,
AXL, ABCG2, ABCC3, MVP, and CRB3) were associated with
longer patient survival (SI Appendix, Fig. S7). Specifically, pa-
tients with high expression of YAP-TEAD downstream target
genes had median survival of 870 d compared with patients with
low expression of YAP-TEAD downstream target genes (median
survival of 360 d) (SI Appendix, Fig. S7). In lung cancers (∼20%
carry STK11 mutations), high expression of CTGF (a YAP-
TEAD gene target) correlated with better overall survival (SI
Appendix, Fig. S8), although in this case, the data provide no clue
to treatment history. Similarly, patients with intrahepatic chol-
angiocarcinomas that expressed high levels of CTGF have less
chance of tumor recurrence and fare better overall survival than
those with tumors that lack CTGF expression (46). Gastric
cancer patients who received 5-FU–based adjuvant therapy
showed better overall survival when the Hippo pathway was
inactivated (low NF2 or high CTGF) (SI Appendix, Fig. S8);
unfortunately, it is not known whether the more positive re-
sponders were treated with one of the 15 drugs that respond to
the inactivation of the Hippo pathway and this omission strongly
limits our interpretation. Finally, a recent study has also shown
that high YAP downstream gene signature correlates with better
prognosis in breast cancers (47). These findings collectively raise
the possibility that Hippo pathway inactivation might play a role
in overall survival in certain chemotherapy regimens, although
most of the existing data are inadequate for reaching definitive
conclusions.

Discussion
Pancreatic cancer responds poorly to chemotherapy (48); most
pancreatic cancer trials have failed, and the current standard-of-
care therapy, gemcitabine, has a median overall survival of only
6 mo (49, 50). Gemcitabine is also used to treat advanced-stage
lung and breast cancers; however, the determinants of sensitivity
and/or resistance to this agent are not fully understood. Com-
paratively little effort has been directed recently by large drug
companies to improving well-established cytotoxic therapies or
even to trying to understand why they succeed or fail. Quite
understandably, it seemed much more productive to look for new
therapies. However, an alternative would be to search for gen-
eral cellular mechanisms that would differentially affect the ac-
tivity of these well-established drugs in different people. On that
assumption, we searched for pathways that could tune the re-
sistance to gemcitabine in pancreatic cancer. This led us to a
previously unknown role of the Hippo–YAP pathway in medi-
ating sensitivity to several chemotherapeutic drugs including
gemcitabine (Fig. 6).
At the onset of our experiments with gemcitabine in pancre-

atic cancer cells, we were surprised to find that there was a large
inconsistency in the published results (Fig. 1B and SI Appendix,
Table S1). The same cell lines in different studies were reported
as sensitive or resistant, and this was true in all 15 cell lines
tested. We found that differences in sensitivity depended very
strongly on the cell density (Fig. 1D), and this stands as the most
likely explanation for these findings and perhaps for others in

Fig. 5. YAP activation sensitizes pancreatic tumors to gemcitabine in mouse
xenograft models. (A) Gemcitabine treatment of YAPS6A expressing Mia-
paca2 xenografts showed significantly reduced tumor growth in nude mice.
(B) Bar graph showing relative levels of intratumor dFdU in Miapaca2 xe-
nografts measured using LC/MS. (C) High YAP-expressing tumors show sig-
nificantly heightened sensitivity to gemcitabine (P = 0.01, Mann–Whitney
test). A plot showing tumor growth inhibition in response to gemcitabine
in PDX models. Representative images of YAP staining among high and
low YAP group are also shown. NSCLC, non–small-cell lung carcinoma. (Scale
bar, 200 μm.)
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drug-profiling efforts (6). Discrepancy in experimental findings is
often blamed on sloppiness and has been excoriated as part of an
epidemic of irreproducible scientific experiments (51). A fairer
lesson is that inconsistency may reflect the extreme sensitivity of
some biological phenomena to experimental conditions. History
has shown that trying to resolve these can inspire discovery, as we
believe has happened here. The resolution to the discrepant
findings with gemcitabine is in large part due to the action of
the Hippo–YAP pathway, which was activated when cells were
grown at high density (Fig. 2B). Conversely, inactivation of
Hippo–YAP pathway, which naturally occurs under sparse
growth conditions, confers sensitivity to gemcitabine and some
other cytotoxic drugs. Experimentally inactivating this pathway
by expressing nonphosphorylatable YAP confers sensitivity to
crowded cells in 2D and in 3D spheroid culture and also in
mouse xenografts (Figs. 2 and 5). Most of the interest in the
Hippo pathway in cancer is in its role as a tumor suppressor.
Paradoxically, our data, along with a disparate list of published
studies, suggest that up-regulating some oncogenes (such as
YAPS6A) and down-regulating tumor suppressors (such as RB,
p53, NF2, or LATS2) can promote the action of certain drugs
(52–55). This appears to be true for gemcitabine and pancreatic
cancer, as we have found that cancer patients carrying a deletion
of or inactivating mutation in certain tumor suppressor genes in
the Hippo pathway appear to live longer on gemcitabine therapy
(Fig. 5 and SI Appendix, Fig. S7).
The data on gemcitabine in pancreatic cancer can be linked to

clinical outcomes because it has been the first-line therapy. In
other tumors, the link is much less clear because the treatment
history is not generally known. There are hints, however, that
mutations in the Hippo pathway can lead to better-than-expected
treatment outcomes. In lung cancers (∼20% carry STK11 mu-
tations), high expression of CTGF (a YAP-TEAD gene target)
correlated with better overall survival (SI Appendix, Fig. S8),
although in this case the data provide no clue to treatment his-
tory. Similarly, patients with intrahepatic cholangiocarcinomas
that expressed high levels of CTGF have less chance of tumor
recurrence and fare better overall survival than those with tu-
mors that lack CTGF expression.
There is some recognition of the positive value of down-

regulating tumor suppressors under other circumstances. A few
tumor suppressors have also been used as predictive biomarkers for
therapy. Loss of BRCA1 enhances sensitivity to apoptosis induced
by antimicrotubule agents such as paclitaxel and vinorelbine, but

inhibits apoptosis induced by DNA-damaging agents such as cis-
platin and etoposide (56). Rb status has also been shown to be
predictive of response to certain drugs such as cisplatin and
etoposide in both xenograft mouse models and clinical studies
(53–55). Similarly, p53 disruption rendered colorectal cancer
cells resistant to the antimetabolite 5-FU but sensitized these
cells to the DNA-damaging drug doxorubicin (52). These
scattered findings are intriguing and suggest that oncogenes
and tumor suppressors may have different effects in drug re-
sponses than they do in tumor initiation.
Drug efflux and metabolism can be major determinants of

drug efficacy. Several drug transporters are known to regulate
gemcitabine efflux and associated resistance (22, 23, 25, 57, 58).
However, drug efflux as a target has generally been unsuccessful
for pharmacology (59). Due to redundancy in substrate speci-
ficity, inhibiting a single ABC transporter has had limited success
in blocking gemcitabine efflux (23). Our genetic perturbation
experiments revealed YAP-TEAD down-regulates expression
of a suite of multidrug transporters (ABCG2, MVP, ABCC3,
ABCC5) as well as CDA, resulting in an effective increase in the
intracellular availability of gemcitabine (Fig. 4). The expression
of many of these transporters including ABCG2, ABCC3, and
ABCC5 and CDA has been shown to be up-regulated in pan-
creatic carcinoma compared with normal pancreatic tissue (SI
Appendix, Fig. S8) (60, 61). In particular, a recent study has
shown that ABCG2 expression regulates gemcitabine response in
pancreatic cancer (62). There is some specificity because we
found no correlation between overall survival and the levels of
Hippo-independent drug transporters in pancreatic cancers (SI
Appendix, Fig. S8). Finally, an increased level of CDA (twofold
to threefold, P < 0.05) was also detected in gastric cancer cells
that had acquired resistance to gemcitabine (SI Appendix, Fig.
S6). A recent study has shown that LKB1 (STK11), another ac-
tivator of the Hippo pathway, enhances chemoresistance to
gemcitabine by up-regulating CDA in a basal triple-negative
breast cancer line (36). STK11 deletion in mouse Schwann cells
led to sixfold increase in CDA expression levels (SI Appendix,
Fig. S6) (63). Furthermore, previous studies have shown that
poor vascularization of pancreatic tumors limits the intratumor
availability of gemcitabine (64). We propose that inefficient
availability of gemcitabine is an intrinsic property of pancreatic
cancer cells and is a major contributor to its drug resistance.
Thus, inhibiting Hippo–YAP pathway, which coordinately affects
many relevant targets, could modulate the drug efflux pumps
that mediate gemcitabine resistance.
In addition to gemcitabine, several other cytotoxic agents such

as antimetabolites and topoisomerase inhibitors are also affected
by Hippo–YAP pathway. Therefore, physiological cell crowding
seems to mediate the response of several drugs, but it is certainly
not a completely general condition for all cytotoxic drugs. It is
plausible but unproven that the Hippo–YAP sensitization to
drugs other than gemcitabine is through modulating intracellular
drug levels or drug metabolism. ABCG2 and ABCC3 are known
to be broad-spectrum drug efflux pumps; substrates of ABCG2
include many drugs that were identified in our screen such as
gemcitabine, cladribine, epirubicin, etoposide, imatinib, metho-
trexate, mitoxantrone, topotecan, and teniposide (65) (Fig. 2 and
SI Appendix, Fig. S5). Alternatively, the intracellular distribution of
the drug may be altered by the Hippo pathway, thereby reducing
the drug concentration at the site of action. For example, Lung
Resistance Protein expression is associated with a redistribution
of doxorubicin from the nucleus to the cytoplasm without changes
in total drug intracellular concentration (66). The underlying
mechanisms of how cell-to-cell contact affects sensitivity to other
drugs and how the Hippo–YAP pathway is involved in regulating
response to other drugs warrants further study.
The FDA has approved over 100 drugs for use in oncology,

and there is still a great need to discover more drugs. Although
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drug discovery holds great potential, we can also make important
gains through better understanding of how existing drugs work
and, perhaps, even more importantly, how they fail (67). We
have begun to appreciate how the Hippo pathway plays a role in
gemcitabine response and how the status of this pathway might
be used as a prognostic marker. Recently attention has turned to
mutational status rather than tissue of origin to assess new drugs
in so-called “basket trials” (68). The view is that it may be harder
to connect a drug to a tissue than it would be to connect it to a
mutated or overexpressed gene. Furthermore, drugs that are
shown to be effective by that route could have much wider utility
than they would be if they were only certified for a specific subset
of patients with an organ-specific tumor. The situation may be
very similar with drugs affected by the Hippo pathway. Although
mutations in the Hippo pathway are relatively uncommon in any
given tumor, when specified by organ of origin, in the aggregate
they represent a significant frequency of tumor occurrence.
Therefore, it could be worth taking into consideration the Hippo
pathway status, when considering first-line therapy for tumors
that harbor Hippo pathway defects. After further study, the
utility of other drugs that appear to be regulated by the Hippo–
YAP pathway could be considered. With a better understanding
of the physiologically adaptive responses of cancer cells to cy-
totoxic drugs, and the use of molecular markers to identify pa-
tients who might therefore qualify as exceptional responders, it
may be possible to extend personalized treatment to the category
of cytotoxic drugs.

Materials and Methods
Cell Lines and Reagents. Pancreatic cancer cell lines Panc1, Panc02.13, BcPC3,
Miapaca2, Panc10.05, Capan2, YAPC, CFPAC1, PATU-8902, PATU-8988S,
DANG, and ASPC1 cells and mesothelioma cell line H2052 were obtained
from American Type Culture Collection. Panc1, Miapaca2, PATU-8902, and
PATU-8988S weremaintained in DMEM supplementedwith 10% (vol/vol) FBS
(FBS), 2 mM glutamine, 100 IU/mL penicillin, and 100 μg/mL streptomycin.

Panc02.13, BxPC3, Panc10.05, Capan2, YAPC, CFPAC1, DANG, ASPC, and
H2052 cells were maintained in RPMI supplemented with 10% (vol/vol) FBS,
2 mM glutamine, 100 IU/mL penicillin, and 100 μg/mL streptomycin.

Small Molecules. Gemcitabine hydrochloride (catalog #G-4177) was pur-
chased from LC Labs. Radiolabeled gemcitabine was purchased from
American Radiolabeled Chemicals. Irrinotecan (catalog #S1198), paclitaxel
(catalog #S1150), docetaxel (catalog #S1148), oxaliplatin (catalog #S1224),
etoposide (catalog #S1225), and camptothecin (catalog #S1288) were pur-
chased from Selleckchem. A set of FDA-approved anticancer drug library
consisting of 119 agents was obtained from the Developmental Therapeutics
Program, Division of Cancer Treatment and Diagnosis, National Cancer In-
stitute, National Institutes of Health (NIH).

Expression Constructs and RNAi. YAP expression construct with serine-to-
alanine mutations at S61A, S109A, S127A, S128A, S131A, S163A, S164A,
and S381A was purchased from Addgene (plasmid ID: 42562). GIPZ Lentiviral
shRNAmir clones for human YAP1 or NF2 were purchased from Dharmacon.

Kinetic Cell Growth Assay. The effect of gemcitabine on pancreatic cancer cell
growth was studied using a kinetic cell growth assay. Pancreatic cancer cells
were plated on 96-well plates (Essen ImageLock; Essen Instruments) at varying
densities (2–4 × 103 for low-density or 15–20 × 103 for high-density experi-
ments). Small-molecule inhibitors at different doses were added 24 h after
plating, and cell confluence was monitored with Incucyte Live-Cell Imaging
System and software (Essen Instruments). Confluence was observed every
hour for 48–144 h or until the control (DMSO-only) samples reached
100% confluence.
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